The electron transfer from aniline and its N-methyl as well as N-phenyl substituted derivatives (N-methylaniline, N,N-dimethylaniline, diphenylamine, triphenylamine) to parent solvent radical cations was studied by electron pulse radiolysis in n-butyl chloride solution. The ionization results in the case of aniline (ArNH2) and the secondary aromatic amines (Ar2NH, Ar(Me)NH) in the synchronous and direct formation of amine radical cations, as well as aminyl radicals, in comparable amounts. Subsequently, ArNH2*+ deprotonates in a delayed reaction with the present nucleophile Cl-, and forms further ArNH*. In contrast, tertiary aromatic amines such as triphenylamine and dimethylaniline yield primarily the corresponding amine radical cations Ar3N*+ or Ar(Me2)N*+, only. The persistent Ar3N*+ forms a charge transfer complex (dimer) with the parent amine molecule, whereas Ar(Me2)N*+ deprotonates to carbon-centered radicals Ar(Me)NCH2*.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp0503056DOI Listing

Publication Analysis

Top Keywords

radical cations
16
aniline n-methyl
8
n-phenyl substituted
8
substituted derivatives
8
electron transfer
8
n-butyl chloride
8
aromatic amines
8
amine radical
8
ionization aniline
4
n-methyl n-phenyl
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!