The propargyl radical has twelve fundamental vibrational modes, gamma(vib)(HCCCH2) = 5a1 [symbol: see text] 3b1 [symbol: see text] 4b2, and nine have been detected in a cryogenic matrix. Ab initio coupled-cluster anharmonic force field calculations were used to help guide some of the assignments. The experimental HC=:C-:CH2 matrix frequencies (cm(-1)) and polarizations are a1 modes--3308.5 +/- 0.5, 3028.3 +/- 0.6, 1935.4 +/- 0.4, 1440.4 +/- 0.5, 1061.6 +/- 0.8; b1 modes--686.6 +/- 0.4, 483.6 +/- 0.5; b2 modes--1016.7 +/- 0.4, 620 +/- 2. We recommend a complete set of gas-phase vibrational frequencies for the propargyl radical, HC=:C-:CH2 2 X (2)B1. From an analysis of the vibrational spectra, the small electric dipole moment, mu(D)(HCCCH2) = 0.150 D, and the large resonance energy (HCCCH2), roughly 11 kcal mol(-1), we conclude that propargyl is a completely delocalized hydrocarbon radical and is best written as HC=:C-:CH2.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp040719j | DOI Listing |
J Org Chem
January 2025
School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China.
A novel regioselective manganese(III)-mediated radical cascade cyclization of N-propargyl enamides with various H-phosphine oxides, H-phosphinates and H-phosphonates was developed. Mechanistic studies show that the reaction is mainly composed of the selective addition of phosphonyl radical to C≡C bond and the intramolecular 6--trig cyclization of vinyl radical. Utilizing this protocol, we successfully synthesized a diverse range of 3-phosphorylpyridines in high efficiency with good functional group compatibility and simple operation.
View Article and Find Full Text PDFTalanta
March 2025
National Reference Laboratory of Veterinary Drug Residues (HZAU), Wuhan, Hubei, 430070, China. Electronic address:
Herein, an ultrasensitive electrochemical biosensor is constructed to detect mecA gene by utilizing electrochemically controlled atom transfer radical polymerization (eATRP) triggered by copper nanoflowers enriched on DNA polymers. Firstly, specific capture and enrichment of mecA gene is achieved by using magnetic separation system, effectively weakening the interference of the complex matrix. Next, enzyme-free hybridization chain reaction is triggered in the presence of mecA gene to form long DNA polymers containing numerous active sites for subsequent binding to streptavidin-copper hybrid nanoflowers (SA@Cu HNFs).
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
December 2024
Center for Genomic Science Innovation, University of Wisconsin Madison, Madison, Wisconsin 53706, United States.
Protein footprinting is a useful method for studying protein higher order structure and conformational changes induced by interactions with various ligands via addition of covalent modifications onto the protein. Compared to other methods that provide single amino acid-level structural resolution, such as cryo-EM, X-ray diffraction, and NMR, mass spectrometry (MS)-based methods can be advantageous as they require lower protein amounts and purity. As with other MS-based proteomic methods, such as post-translational modification analysis, enrichment techniques have proven necessary for both optimal sensitivity and sequence coverage when analyzing highly complex proteomes.
View Article and Find Full Text PDFAcc Chem Res
December 2024
Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China.
J Mol Model
November 2024
School of Chemistry and Life Sciences, Hanoi University of Science and Technology, Hanoi, Vietnam.
Context: The propargyl radical plays a critical role in various chemical processes, including hydrocarbon combustion, flame synthesis, and interstellar chemistry. Its unique stability arises from the delocalization of π-electrons, allowing it to participate in a wide range of reactions despite being a radical. The self-reaction of propargyl radicals is a fundamental step in synthesizing polycyclic aromatic hydrocarbons.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!