Fourier transform infrared (FTIR) spectroscopy combined with a long-path collisional cooling cell was used to investigate the temporal evolution of CO2 nanoparticles and binary H2O/CO2 nanocomposites in the aerosol phase at 80 K. The experimental conditions for the formation of different CO2 particle shapes as slab, shell, sphere, cube, and needle have been studied by comparison with calculated data from the literature. The H2O/CO2 nanoparticles were generated with a newly developed multiple-pulse injection technique and with the simpler flow-in technique. The carbon dioxide nu3-vibration band at 2360 cm(-1) and the water ice OH-dangling band at 3700 cm(-1) were used to study the evolution of structure, shape, and contact area of the nanocomposites over 150 s. Different stages of binary nanocomposites with primary water ice cores were identified dependent on the injected CO2 portion: (a) disordered (amorphous) CO2 slabs on water particle surfaces, (b) globular crystalline CO2 humps sticking on the water cores, and (c) water cores being completely enclosed in bigger predominantly crystalline CO2 nanoparticles. However, regular CO2 shell structures on primary water particles showing both longitudinal (LO) and transverse (TO) optical mode features of the nu3-vibration band could not be observed. Experiments with reversed nucleation order indicate that H2O/CO2 composite particles with different initial structures evolve toward similar molecular nanocomposites with separated CO2 and H2O regions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp044075r | DOI Listing |
J Fluoresc
January 2025
Department of Chemistry, Sardar Vallabhbhai National Institute Technology, Surat, Gujarat, 395007, India.
An easy-to-synthesize aggregation-induced emission (AIE) active Schiff base HNSA was obtained by condensing equimolar amount of 3-hydroxy-2-naphthohydrazide and salicylaldehyde. In pure DMSO, HNSA is non-fluorescent, but increasing the HEPES (HO, 10 mM, pH 7.4) fraction (f) ≥ 90% showed an intense green fluorescence with maximum fluorescence intensity at 515 nm.
View Article and Find Full Text PDFArch Dermatol Res
January 2025
Department of Dermatology, Venereology, and Andrology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt.
Atrophic acne scars present a significant therapeutic challenge. While subcision with various adjunctive treatments, including fractional CO₂ lasers and polydioxanone (PDO) threads, has been employed for scar remodeling, comparative evidence on their efficacy remains limited. This study aims to compare the clinical efficacy and patient satisfaction between subcision with fractional CO₂ laser and subcision with PDO screw threads in managing atrophic acne scars.
View Article and Find Full Text PDFArch Dermatol Res
January 2025
Department of Dermatology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt.
Palmar hyperhidrosis is common condition that is challenging to treat. Nonsurgical treatments include topical antiperspirants, iontophoresis, anticholinergic drugs and botulinum toxin injections. To evaluate the safety and efficacy of ablative fractional laser therapy, combined with topically applied botulinum toxin versus its injection for the treatment of hyperhidrosis.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China.
Due to the global demands on carbon neutralization, CO separation membranes, particularly those based on two-dimensional (2D) materials, have attracted increasing attention. However, recent works have focused on the chemical decoration of membranes to realize the selective transport, leading to the compromised stability in the presence of moisture. Herein, we develop a series of 2D capillaries based on layered double hydroxide (LDH), graphene oxide, and vermiculite to enhance the oversaturation of CO in the confined water for promoting the membrane permselectivity.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Center for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
Photoreduction of CO into hydrocarbons is a potential strategy for reducing atmospheric CO and effectively utilizing carbon resources. Cu-deposited TiO photocatalysts stand out in this area due to their good photocatalytic activity and potential methanol selectivity. However, the underlying mechanism and factors controlling product selectivity remain less understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!