The structure and bonding of the azo dye Orange II (Acid Orange 7) in parent and reduced forms have been studied using NMR, infrared, Raman, UV-visible, and electron paramagnetic resonance (EPR) spectroscopy, allied with density functional theory (DFT) calculations on three hydrazone models (no sulfonate, anionic sulfonate, and protonated sulfonate) and one azo model (protonated sulfonate). The calculated structures of the three hydrazone models are similar to each other and that of the model without a sulfonate group (Solvent Yellow 14) closely matches its reported crystal structure. The 1H and 13C NMR resonances of Orange II, assigned directly from 1D and 2D experimental data, indicate that it is present as > or = 95% hydrazone in aqueous solution, and as a ca. 70:30 hydrazone:azo mixture in dimethyl sulfoxide at 300 K. Overall, the experimental data from Orange II are matched well by calculations on the hydrazone model with a protonated sulfonate group; the IR, Raman, and UV-visible spectra of Orange II are assigned to specific vibrational modes and electronic transitions calculated for this model. The EPR spectrum obtained on one-electron reduction of Orange II by the 2-hydroxy-2-propyl radical (*CMe2OH) at pH 4 is attributed to the hydrazyl radical produced on protonation of the radical anion. Calculations on reduced forms of the model dyes support this assignment, with electron spin density on the two nitrogen atoms and the naphthyl ring; in addition, they provide estimates of the structures, vibrational spectra, and electronic transitions of the radicals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp045216s | DOI Listing |
Mikrochim Acta
January 2025
College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, China.
Myoglobin (Mb), an important cardiac marker, plays a crucial role in diagnosing, monitoring, and evaluating the condition of patients with cardiovascular diseases. Here, we propose a label-free photoelectrochemical (PEC) sensor for the detection of Mb through target regulated the photoactivity of AgS/FeOOH heterojunction. The AgS/FeOOH nanospindles were synthesized and served as a sensing platform for the fabrication of bio-recognized process for Mb.
View Article and Find Full Text PDFPsychol Res
January 2025
School of Psychology, Shenzhen University, Shenzhen, China.
Extrinsic motivation can foster effortful cognitive control. Moreover, the selective coupling of extrinsic motivation on low- versus high-control demands tasks would exert an additional impact. However, to what extent their influences are further modulated by the level of Need for Cognition (NFC) remains unclear.
View Article and Find Full Text PDFLangmuir
January 2025
School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, P. R. China.
Understanding the interfacial interaction mechanisms between oil and minerals is of vital importance in the applications of petroleum production and environmental protection. In this work, the interactions of dodecane with mica and calcite in aqueous media were investigated by using the drop probe technique based on atomic force microscopy. For the dodecane-mica interactions, the electrical double layer (EDL) repulsion dominated in 10 mM NaCl solution, and a higher pH facilitated the detachment of dodecane.
View Article and Find Full Text PDFACS Nano
January 2025
Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec H2X 0A9, Canada.
The abnormally viscous and thick mucus is a hallmark of cystic fibrosis (CF). How the mutated CF gene causes abnormal mucus remains an unanswered question of paramount interest. Mucus is produced by the hydration of gel-forming mucin macromolecules that are stored in intracellular granules prior to release.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan.
This study presents a novel nanostructured material formed by inserting oxidized carbon nanohorns (CNHox) between layered graphene oxide (GO) nanosheets using metal ions (M) from nitrate as intermediates. The resulting GO-CNHox-M structure effectively mitigated interlayer aggregation of the GO nanosheets. This insertion strategy promoted the formation of nanowindows on the surface of the GO sheets and larger mesopores between the GO nanosheets, improving material porosity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!