Ab initio studies of nonbonding interactions for ethylene and propene dimers were conducted at the MP2/6-311+G(2df,2pd) level. The dimers were attractive in all of the orientations studied; however, the attraction was <0.1 kcal/mol for ethylene D2h and C2h dimers, for which the pi-electron clouds or H atoms interact closely. A previously introduced transferable potential model, NIPE [Jalkanen, J.-P.; Pakkanen, T. A.; Yang, Y.; Rowley, R. L. J. Chem. Phys. 2003, 118, 5474], which is based on quantum chemical calculations of small alkane molecules, was tested against the propene and ethylene dimer data. Comparisons of results showed that interaction energies for orientations dominated by interactions between the propene methyl groups or two hydrogens were accurately predicted with the NIPE model. Interactions involving the double bond were not predicted as well, because the original NIPE regression data set did not contain any information about pi-electron systems. An extension of the NIPE model to include pi-electron interactions is proposed. Additional interaction sites are used with the same energy function as atomic interactions. This addition provides a more accurate description of the interaction energies of both ethylene and propene and extends the transferability of the NIPE model to alkenes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp047325c | DOI Listing |
Chem Asian J
January 2025
Shenzhen Polytechnic University, Hoffmann Institute of Advanced Materials, 7098 Liuxian Blvd., 518055, Shenzhen, CHINA.
The purification of polymer-grade (>99.9%) olefins (mostly C2 and C3) represents a significant yet challenging process in petrochemical industry. The commonly employed method for hydrocarbon separation involves heat-driven distillations.
View Article and Find Full Text PDFChemosphere
January 2025
University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China. Electronic address:
The degradation of rubber seal (RS), particularly ethylene-propylene-diene (EPDM), in the drinking water networks has been confirmed, yet the role of RS as a disinfection by-product (DBP) precursor remains unknown. This study provides explicit proof of the formation of halogenated disinfection by-products (X-DBPs) from RS in chlorinated drinking water within water supply systems. Over time, exposure to chlorinated water ages RS, releasing high levels of organic compounds, which act as DBP precursors.
View Article and Find Full Text PDFMicroorganisms
December 2024
Department of Microbiology, Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Akad. G. Bonchev Street, bl. 26, 1113 Sofia, Bulgaria.
Biofilms are a well-known multifactorial virulence factor with a pivotal role in chronic bacterial infections. Their pathogenicity is determined by the combination of strain-specific mechanisms of virulence and the biofilm extracellular matrix (ECM) protecting the bacteria from the host immune defense and the action of antibacterials. The successful antibiofilm agents should combine antibacterial activity and good biocompatibility with the capacity to penetrate through the ECM.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States.
Harvesting low-velocity water flow energy stably over the long term is a significant challenge. Herein, a flexible rolling triboelectric nanogenerator with a bionic gill cover structure (GFR-TENG) to harvest steady low-velocity water flow energy is proposed. The dielectric material of the GFR-TENG is eight flexible hollow fluorinated ethylene propylene (FEP) pipes, which guarantees that rolling friction is formed between the dielectric material and copper electrode.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!