Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Tautomerization paths of 2(and 4)-hydroxypyridine (called here HP) to 2(and 4)-pyridone (called here PY) with water molecules were investigated by the use of density functional theory calculations. Potential energies were compared for a number of water molecules. The 2-HP molecule was found to be isomerized most readily and concertedly to the 2-PY one via proton relays with two water molecules. The reaction pattern is invariant even when outer water molecules are added. The 4-HP(H(2)O)(n) --> 4-PY(H(2)O)(n) reaction model did not give small activation energies. However, a reaction of (4-HP)(2)(H(2)O)(2) --> (4-PY)(2)(H(2)O)(2) was found to occur readily through a transient ion-pair intermediate. The conversion processes of (2-PY)(2) to the tautomerization reacting system were discussed. The hydrogen-bond directionality regulates the tautomerization paths.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp040451w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!