Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A theoretical study of the low-lying singlet and triplet states of ClONO is presented. Calculations of excitation energies and oscillator strengths are reported using multireference configuration interaction, MRD-CI, methods with the cc-pVDZ + sp basis set. The calculations predict the dominant transition, 4(1)A' <-- 1(1)A', at 5.70 eV. The transition 2(1)A' <-- 1(1)A', at 4.44 eV, with much lower intensity nicely matches the experimental absorption maximum observed around 290 nm (4.27 eV). The potential energy curves for both states are found to be highly repulsive along the Cl-O coordinate implying that direct and fast dissociation to the Cl + NO2 products will occur. Photodissociation along the N-O coordinate is less likely because of barriers on the order of 0.3 eV for low-lying excited states. A comparison between the calculated electronic energies related to the two dominant excited states of ClONO and BrONO indicates that the transitions lie about 0.6 eV higher if bromine is replaced by chlorine. The stratospheric chemistry implications of ClONO and BrONO are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp053244k | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!