Within density functional theory at the general gradient approximation for exchange and correlation (BPW91) and the relativistic 19-electron Los Alamos National Laboratory effective core pseudopotentials and basis sets (3s3p2d), the geometric and electronic structures of Pt(6)Au bimetallic clusters have been studied in detail in comparison with Pt(7). A total of 38 conformations for Pt(6)Au are located. The most stable conformation for Pt(6)Au is a sextet with an edge- and face-capped trigonal bipyramid, in which the Au atom caps an edge of the trigonal bipyramid. Pt(6)Au, in general, prefers a three-dimensional geometry and high spin electronic state with multireference character. The electronic impact of the doping of Au in Pt clusters on the overall chemical activity of the doped bimetallic cluster is not as significant as that of the doping of Pt in Au clusters; however, the doping of Au lowers the chemical activity, thus enhancing the chemoselectivity in the gas phase, of PtAu bimetallic clusters.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp053961e | DOI Listing |
J Chem Phys
December 2024
Van Swinderen Institute for Particle Physics and Gravity, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
In this work, the molecular enhancement factors of the P,T-odd interactions involving the electron electric dipole moment (Wd) and the scalar-pseudoscalar nucleon-electron couplings (Ws) are computed for the ground state of the bimetallic molecules YbCu, YbAg, and YbAu. These systems offer a promising avenue for creating cold molecules by associating laser-cooled atoms. The relativistic coupled-cluster approach is used in the calculations, and a thorough uncertainty analysis is performed to give accurate and reliable uncertainties to the obtained values.
View Article and Find Full Text PDFInorg Chem
December 2024
Institute of Chemistry, Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
Thioxanthone (TX) molecules and their derivatives are well-known photoactive compounds. Yet, there exist only a handful of luminescent systems combining TX with transition metals. Recently, we reported a TX-based PSP pincer ligand () that appears as a promising platform for filling this niche.
View Article and Find Full Text PDFInorg Chem
December 2024
Division Surface and Corrosion Science, KTH Royal Institute of Technology, 114 28 Stockholm, Sweden.
Nanomaterials are vital in catalysis, sensing, energy storage, and biomedicine and now incorporate multiprincipal element materials to meet evolving technological demands. However, achieving a uniform distribution of multiple elements in these nanomaterials poses significant challenges. In this study, various Cu-Ni compositions were used as a model system to investigate the formation of bimetallic nanoparticles by employing computer simulation molecular dynamics methods and comparing the results with observations from solution-combustion-synthesized materials of the same compositions.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.
Electrocatalytic Nitrate Reduction to Ammonia (NORR) offers a promising solution to both environmental pollution and the sustainable energy conversion. Here we propose an efficient cascade catalytic mechanism based on a dual Zn-NiS sites, orderly assembled in a redox-active metal-organic framework structure, which separately promotes the reaction kinetics of nitrate-to-nitrite and nitrite-to-ammonia conversions. Specifically, the Zn clusters adsorb and selectively reduce the NO to NO , whereas [NiS] acts as an analogue to the ferredoxins, subsequently boosts the reduction of NO to produce NH.
View Article and Find Full Text PDFDalton Trans
December 2024
School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
Ag/Cu bimetallic clusters have been widely reported, but synthesis of such clusters simple self-assembly of heterometallic ions in air remains challenging due to the susceptibility of Cu ions to oxidation. In this study, protected by the phenylacetylene auxiliary ligand, we utilized [Cu(CHCN)]PF in conjunction with the (PrSAg) polymer to form Ag(I)-Cu(I) oligomer precursors, serving as the starting point for constructing a new [AgCu(PrS)(DPPM)](PF) cluster (DPPM = bis(diphenylphosphino)methane, Ag11-xCux, = 5-9). When the (PrSAg) precursor was replaced by (BuSAg), another cluster [AgCuS(BuS)(CHCN)](CHOH)(HO)(PF) (Ag21Cu4) was obtained.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!