Chrysene is one of the basic polycyclic aromatic hydrocarbons that are toxic environmental pollutants. The photoproducts of 6-aminochrysene (6AC) include 5,6-chrysenequinone (5,6-CQ) along with some minor products. In this study, cytotoxicity and genotoxicity of 6AC and 5,6-CQ to a human skin cell line, HaCaT, were measured with the fluorescein diacetate uptake (FDA) test and comet assay, respectively, in the presence or absence of ultraviolet A (UVA) irradiation. The FDA test result showed that HaCaT cell viability decreased dose dependently after exposure to UVA irradiation in both 6AC (0, 0.1, 0.5, 1, 5, 10, 50 microM) and 5,6-CQ (0, 0.05, 0.25, 0.5, 2.5, 5, 25 microM) groups, with the 6AC group having lower cell viability at the same substrate concentrations; therefore, 6AC was more cytotoxic. Results of the comet assay showed that the extent of DNA damage was also dose dependent after the combined UVA and 6AC treatment (0, 0.05, 0.1, 0.5, 1 microM), although no DNA damage was detectable in the 6AC group without UVA irradiation. In addition, no DNA damage was found in the 5,6-CQ group with or without UVA irradiation. Our study indicated that 5,6-CQ, the major photoproduct of 6AC, was less photocytotoxic than the parent compound and was not photogenotoxic to HaCaT cells under the experimental conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1897/05-482r.1DOI Listing

Publication Analysis

Top Keywords

uva irradiation
16
dna damage
12
cytotoxicity genotoxicity
8
hacat cells
8
6ac
8
fda test
8
comet assay
8
cell viability
8
6ac group
8
group uva
8

Similar Publications

Increased matrix metalloproteinase-1 expression by coexposure to UVA and cigarette sidestream smoke and contribution of histone acetylation.

Genes Environ

January 2025

Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Yada 52- 1, Suruga-ku, Shizuoka, 422-8526, Japan.

Background: Skin is exposed to various environmental factors throughout life, and some of these factors are known to contribute to skin aging. Long-term solar UV exposure is a well-known cause of skin aging, as is cigarette smoke, which contains a number of chemicals. In this study, combined effect of UVA and cigarette sidestream smoke (CSS) on matrix metalloproteinase-1 (MMP-1) induction was investigated.

View Article and Find Full Text PDF

The study aims to investigate an improved version of lipid nanocarriers (NLCs) (formulated with functional coconut butter and marula oil) by designing hyaluronic acid (HA) decorated NLC co-loaded with dual UVA (butyl methoxy dibenzoyl methane, BMDBM), UVB absorbers (ethyl-hexyl-salicylate, EHS) and a Raspberry rich polyphenols fraction (RPRF) for development of more natural NLC-based to-pical formulations. : Quality and quantitative attributes of classic- and HA-NLC have been assigned based on particle size, electrokinetic potential, encapsulation efficiency, spectroscopic characteristics, and high-resolution mass spectrometry. To establish the performance profile of antioxidant activity, release of active substances, sun blocking action, and photostability, in vitro studies were conducted.

View Article and Find Full Text PDF

Energy delivered at different wavelengths causes different types of damage to DNA. PC-3, FaDu, 4T1 and B16-F10 cells were irradiated with different wavelengths of ultraviolet light (UVA/UVC) and ionizing radiation (X-ray). Furthermore, different photosensitizers (ortho-iodo-Hoechst33258/psoralen/trioxsalen) were tested for their amplifying effect.

View Article and Find Full Text PDF

Recently, photoactivated riboflavin (RF) treatments have been approved to improve resin-dentin bonding by enhancing dentinal collagen crosslinking. This study aimed to evaluate whether RF activated by blue light (BL, 450 nm) strengthens the collagen matrix, increases resistance to enzymatic degradation, and improves adhesion as effectively as ultraviolet A (UVA, 375 nm) activation. Six groups were examined: control (no treatment); RF0.

View Article and Find Full Text PDF

Introduction: Recent findings show that visible light, particularly blue light, stimulates melanogenesis in human skin, though the underlying mechanisms remain debated. This study aimed to determine the cell damage threshold of non-ionizing blue light on keratinocytes while preserving their ability to stimulate melanogenesis.

Methods: Human keratinocytes (N = 3) and melanocytes (N = 3) were isolated from skin samples of varying Fitzpatrick skin phototypes and irradiated with blue light (λpeak = 457 nm) and UVA light (λpeak = 385 nm).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!