Reproductive effects of pulp mill effluents on fish continue to be reported in Canadian waters. Spawning delays, reduced gonad size, and altered levels of sex steroid hormones have been found in both sexes of various fish species exposed to effluents. We initiated a project to identify the source/cause of such effects. In part 1 of this two-part series, we exposed mature adult fathead minnow (FHM; Pimephales promelas) for 21 d to final treated effluent (1% and 100% v/v) from a bleached kraft pulp mill in Terrace Bay (ON, Canada). Results suggested pulp mill effluent from this mill affected reproductive indicators in FHM and effects were dependent on effluent concentration, duration of exposure, and method of data analysis. The main objective of this paper was to use the FHM assay to identify waste stream sources within the mill that affect reproductive indicators. Various process streams were selected, characterized with respect to effluent chemistry and acute toxicity, and a subset was tested on-site with the 21-d FHM bioassay. Results showed that both the combined mill effluent (before secondary treatment) and the combined alkaline stream (CALK) caused both decreased spawning events (approximately 55% for both streams) and decreased egg production (28 and 74%, respectively), and the CALK stream resulted in significant male ovipositor development. By comparing response patterns we were able to identify the CALK stream as a source of compounds at this mill affecting reproductive indicators in FHM and highlight this stream for further toxicity identification evaluation.

Download full-text PDF

Source
http://dx.doi.org/10.1897/05-418r.1DOI Listing

Publication Analysis

Top Keywords

pulp mill
16
mill reproductive
12
reproductive indicators
12
fathead minnow
8
pimephales promelas
8
bleached kraft
8
kraft pulp
8
mill
8
mill effluent
8
indicators fhm
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!