We report the development and application of a novel, solid phase-contact bioassay based on two whole-cell bacterial biosensor strains. Our data indicate that a significant fraction of particle-associated Cu may be available to bacteria in dilute soil suspensions but also support the conventional view that mainly the soluble fraction of Cu is directly available to bacteria under more realistic soil conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1897/05-558r.1DOI Listing

Publication Analysis

Top Keywords

biosensor strains
8
bioavailability toxicity
4
toxicity soil
4
soil particle-associated
4
particle-associated copper
4
copper determined
4
determined bioluminescent
4
bioluminescent pseudomonas
4
pseudomonas fluorescens
4
fluorescens biosensor
4

Similar Publications

Electrodes functionalised with weak electroactive microorganisms offer a viable alternative to conventional chemical sensors for detecting priority pollutants in bioremediation processes. Biofilm-based biosensors have been proposed for this purpose. However, biofilm formation and maturation require 24-48 h, and the microstructure and coverage of the electrode surface cannot be controlled, leading to poorly reproducible signal and sensitivity.

View Article and Find Full Text PDF

Subtractive Inhibition Assay Based on PagN-Specific Monoclonal Antibody for the Detection of Salmonella Using Surface Plasmon Resonance.

Biotechnol J

January 2025

Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China.

Salmonella is a common foodborne zoonotic pathogen that poses a great threat to human health and breeding industry. The rapid detection of Salmonella is necessary for early prevention and control. In this study, a subtractive inhibition assay (SIA) based on surface plasmon resonance (SPR) for the rapid detection of Salmonella was developed.

View Article and Find Full Text PDF

Amino acids are important bio-based products with a multi-billion-dollar market. The development of efficient high-throughput screening technologies utilizing biosensors is essential for the rapid identification of high-performance amino acid producers. However, there remains a pressing need for biosensors that specifically target certain critical amino acids, such as L-threonine and L-proline.

View Article and Find Full Text PDF

Background: In biomanufacturing of surface-active agents, such as rhamnolipids, excessive foaming is a significant obstacle for the development of high-performing bioprocesses. The exploitation of the inherent tolerance of Pseudomonas putida KT2440, an obligate aerobic bacterium, to microaerobic conditions has received little attention so far. Here low-oxygen inducible promoters were characterized in biosensor strains and exploited for process control under reduction of foam formation by low aeration and stirring rates during biosynthesis of rhamnolipids.

View Article and Find Full Text PDF

Fluorescent biosensors offer a powerful tool for tracking and quantifying protein activity in living systems with high temporospatial resolution. However, the expression of genetically encoded fluorescent proteins can interfere with endogenous signaling pathways, potentially leading to developmental and physiological abnormalities. The EKAREV-NLS mouse model, which carries a FRET-based biosensor for monitoring extracellular signal-regulated kinase (ERK) activity, has been widely utilized both in vivo and in vitro across various cell types and organs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!