Ion imprinted polymer particles for separation of yttrium from selected lanthanides.

J Sep Sci

Regional Research Laboratory (CSIR), Trivandrum 695019, India.

Published: June 2006

Lanthanide(III) (Dy, Gd, Tb and Y) ion imprinted polymer (IIP) materials were synthesized via single pot reaction by mixing lanthanide imprint ion with 5,7-dichloroquinoline-8-ol, 4-vinylpyridine, styrene, divinylbenzene and 2,2'-azobisisobutyronitrile in 2-methoxyethanol porogen. The imprint ion was removed by stirring the above materials (after powdering) with 6 mol/L HCl to obtain the respective lanthanide IIP particles. Y-Dy, Y-Gd and Dy-Gd polymer particles were obtained by physically mixing equal amounts of the respective leached individual lanthanide(III) particles. Control polymer (CP) particles were similarly prepared without imprint ion. Application of the above synthesized polymer particles was tested for separation of Y from Dy, Gd and Tb employing batch and column SPE methods using inductively coupled plasma atomic emission spectrometry for the determination. Optimization studies show that Y present in 500 mL can be preconcentrated using Dy-Gd IIP particles and eluted with 20 mL of 1.0 mol/L of HCl, providing an enrichment factor of approximately 25. Dy-Gd IIP particles offer higher selectivity coefficients for Y over other lanthanides compared to other IIP particles and commercial liquid-liquid extractants. Selectivity studies for Y over other coexisting inorganic species (other than lanthanides) were also conducted and the results obtained show a quantitative separation of Y from other inorganics other than Cu(II) and Fe(III). Furthermore, both batch and column studies indicate the purification of yttrium concentrate from 55.0 +/- 0.2 to 65.2 +/- 0.2% in a single stage of operation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jssc.200600008DOI Listing

Publication Analysis

Top Keywords

polymer particles
16
iip particles
16
imprint ion
12
particles
9
ion imprinted
8
imprinted polymer
8
mol/l hcl
8
batch column
8
dy-gd iip
8
ion
5

Similar Publications

Density-dependent flow generation in active cytoskeletal fluids.

Sci Rep

December 2024

Department of Chemical Engineering, Kyoto University, Nishi-kyoku, Kyoto, 615-8510, Japan.

The actomyosin cytoskeleton, a protein assembly comprising actin fibers and the myosin molecular motor, drives various cellular dynamics through contractile force generation at high densities. However, the relationship between the density dependence of the actomyosin cytoskeleton and force-controlled ordered structure remains poorly understood. In this study, we measured contraction-driven flow generation by varying the concentration of cell extracts containing the actomyosin cytoskeleton and associated nucleation factors.

View Article and Find Full Text PDF

Aero-TiO three-dimensional nanoarchitecture for photocatalytic degradation of tetracycline.

Sci Rep

December 2024

Centre of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, 41A, Grigore Ghica Voda Alley, 700487, Iasi, Romania.

One of the biggest issues of wide bandgap semiconductor use in photocatalytic wastewater treatment is the reusability of the material and avoiding the contamination of water with the material itself. In this paper, we report on a novel TiO aeromaterial (aero-TiO) consisting of hollow microtetrapods with ZnTiO inclusions. Atomic layer deposition has been used to obtain particles of unique shape allowing them to interlock thereby protecting the photocatalyst from erosion and damage when incorporated in active filters.

View Article and Find Full Text PDF

Hypothesis: The porosity affects the rheological response of porous particle suspensions.

Experiments: Non-Brownian suspensions of porous particles immersed in a Newtonian Polyisobutene are investigated. Three different particles, with different porosity, pore structure and similar size, and non-porous irregular particles are used.

View Article and Find Full Text PDF

Developing novel materials is an essential requirement in the engineering field. This study investigates the effects of incorporating wood dust particles on the mechanical and erosive wear properties of Luffa acutangula fiber (LAF)-reinforced phenol-formaldehyde composites, fabricated using the hand layup method with a constant 20% fiber content and varying wood dust particle contents of 0%, 10%, 20%, and 30%. Using the Taguchi method, the study identifies the optimal combination for minimizing erosive wear - 20% wood dust content, 45 m/s impact velocity, 60° impingement angle, 600 μm erodent size, and 60 mm standoff distance-achieving a minimum erosion rate of 189.

View Article and Find Full Text PDF

Advances in nanomaterials for radiation protection in the aerospace industry: a systematic review.

Nanotechnology

December 2024

CCTS/DFQM, UFSCar - Campus Sorocaba, Rod. João Leme dos Santos km 110 - SP-264 Bairro do Itinga - Sorocaba CEP 18052-780, Sorocaba, 18052-780, BRAZIL.

Nanomaterials stand out for their exceptional properties and innovative potential, especially in applications that protect against space radiation. They offer an innovative approach to this challenge, demonstrating notable properties of radiation absorption and scattering, as well as flexibility and lightness for the development of protective clothing and equipment. This review details the use of polymeric materials, such as polyimides (PIs), which are efficient at attenuating ultraviolet (UV) radiation and atomic oxygen (AO).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!