Highly preorganized pyrazolate-based dinickel(II) systems are shown to constitute suitable building blocks for the targeted assembly of azido-bridged Ni4 complexes with rectangular arrangement of the metal ions. A set of such complexes has been prepared and structurally characterized. mu-1,1-Azide binding within the bimetallic sub-units is controlled by the chosen topology of the pyrazolate ligand scaffold and gives rise to the anticipated ferromagnetic intradimer coupling. Overall magnetic properties of the Ni4 array, however, are mainly determined by the Ni-NNN-Ni torsion of the interdimer mu-1,3-azido linkages. According to the crystallographic results, these torsion angles vary over a wide range, and partial disorder of the mu-1,3-azide bridge in one of the compounds indicates high structural flexibility even in the solid state. Two of the compounds represent rare examples of molecular complexes with a Ni-NNN-Ni torsion angle of almost exactly 90 degrees . The resulting magnetic ground state (neglecting zero-field splitting) is either S = 0 or S = 4 depending on the Ni-NNN-Ni torsion, and in one case a drastic change is observed upon extrusion of lattice solvent.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/b517254c | DOI Listing |
Dalton Trans
July 2006
Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany.
Highly preorganized pyrazolate-based dinickel(II) systems are shown to constitute suitable building blocks for the targeted assembly of azido-bridged Ni4 complexes with rectangular arrangement of the metal ions. A set of such complexes has been prepared and structurally characterized. mu-1,1-Azide binding within the bimetallic sub-units is controlled by the chosen topology of the pyrazolate ligand scaffold and gives rise to the anticipated ferromagnetic intradimer coupling.
View Article and Find Full Text PDFInorg Chem
February 2005
Institut für Anorganische Chemie, Georg-August-Universität, Tammannstrasse 4, D-37077 Göttingen, Germany.
Using a set of pyrazolate-based dinucleating ligands with thioether sidearms and a set of different carboxylates, seven tetranuclear nickel(II) complexes of types [L2Ni4(N3)3(O2CR)2](ClO4) (1) and [L2Ni4(N3)(O2CR)4](ClO4) (2) featuring an unprecedented central mu4-1,1,3,3-azide could be isolated and fully characterized. X-ray crystal structures are discussed for 1a,b,e and 2b. The mu4-1,1,3,3-azide is symmetric in all cases except 1a but exhibits distinct binding modes with significantly different Ni-N(azide)-Ni angles and Ni-NNN-Ni torsions in type 1 and 2 complexes, which indicates high structural flexibility of this novel bridging unit.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!