Objectives: Quantitative morphometry under light microscope was applied to analyze changes in the number and the diameters of skeletal muscle fibers and their myonuclei in the extensor digitorum longus and rectus femoris muscles of normal and streptozotocin-diabetic rats.
Animals: Twelve adult male albino Fischer rats each weighing 300 g were used in the study.
Interventions: Streptozotocin (STZ)-diabetes was induced by a single intravenous injection of STZ (75 mg/kg body weight) via the tail vein. Six normal and 6 STZ-diabetic rats were sacrificed; samples of the extensor digitorum longus and rectus femoris muscles were taken, fixed in modified Bouin's fluid and processed for paraffin sectioning. The muscle samples were properly oriented during paraffin embedding for cross and longitudinal sectioning. Sections from each block were cut, processed and stained with hematoxylin and eosin. Randomly selected samples from normal and STZ-diabetic rats were analyzed using a 100x objective lens of a light microscope.
Main Outcome Measures: The diameters of the fibers and the length of the myonuclei were determined from the longitudinal sections while the diameters and number of fibers and myonuclei were measured from the cross sections. A length measuring 10x reticule fitted to the microscope eye piece was used for the direct measurement of the fibers and myonuclei profiles. Morphometric measurement from each rat was determined and the data were pooled for the control and diabetic groups of rats. All data presented are means with standard error and were statistically analyzed using the Student's t-test.
Results: Histological examination of the stained sections from diabetic rats revealed the presence of areas of inflammation and necrosis in the myofibers of both muscles. The estimated mean diameter of the muscle fibers in the STZ-diabetic rats was reduced by 36% and 31% respectively in the longitudinal and cross sections of the extensor digitorum longus. Similarly, the diameter of the fibers of the rectus femoris in the longitudinal and the cross sections were reduced by 44% and 31%, respectively. On the other hand, a corresponding increase in the number of fibers per unit area was recorded in both muscles of the STZ-diabetic rats which amounted to 13% and 16%, respectively as compared to those of normal rats. Analysis of the myonuclei in normal and diabetic rats revealed a slight decrease in their length and diameter which amounted to 4% and 6%, respectively for the extensor digitorum longus and to 4% and 18%, respectively for the rectus femoris. The estimated numerical density of myonuclei per unit area was 10% lower in both muscles of the diabetic rats.
Conclusions: Skeletal muscular atrophy is a well-documented complication in longstanding diabetes and has been attributed to the direct effect of low serum insulin on the motor end plates and on the synthesis of contractile proteins. The present morphometric study illustrates a reduction in the diameter of the myofibers of the extensor digitorum longus and rectus femoris muscles of STZ-diabetic rats. A slight but significant decrease in the length and diameters of the myonuclei between the diabetic and the normal rats was recorded. The results also indicate more evident morphologic changes in the myofibers of the hindlimb muscle.
Download full-text PDF |
Source |
---|
Mitochondria are key regulators of metabolism and ATP supply in skeletal muscle, while circadian rhythms influence many physiological processes. However, whether mitochondrial function is intrinsically regulated in a circadian manner in mouse skeletal muscle is inadequately understood. Accordingly, we measured post-absorptive transcript abundance of markers of mitochondrial biogenesis, dynamics, and metabolism (extensor digitorum longus [EDL], soleus, gastrocnemius), protein abundance of electron transport chain complexes (EDL and soleus), enzymatic activity of SDH (tibialis anterior and plantaris), and maximum uncoupled respiration (tibialis anterior) in different skeletal muscles from female C57BL/6NJ mice at four zeitgeber times (ZT), ZT 1, 7, 13, and 19.
View Article and Find Full Text PDFJ Biomech
January 2025
The Joint Department of Biomedical Engineering, the University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; North Carolina State University, Raleigh, NC, United States.
Throughout childhood growth and development, both the nervous and the musculoskeletal systems undergo rapid change. The goal of this study was to examine the impact of growth-related changes in skeletal size and muscle strength on the neural control of finger force generation. By modifying an existing OpenSim hand model in accordance with pediatric anthropometric data, we created 10 distinct models representing males and females at each year of development from 6 to 10 years old.
View Article and Find Full Text PDFNutrients
January 2025
BiOSSE, Biology of Organisms, Stress, Health, Environment, Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, 53020 Laval, France.
Background: Physical activity, such as running, protects against cardiovascular disease and obesity but can induce oxidative stress. Athletes often consume antioxidants to counteract the overproduction of reactive oxygen and nitrogen species during exercise. , particularly its phycocyanin content, activates the Nrf2 pathway, stimulating antioxidant responses.
View Article and Find Full Text PDFFASEB J
January 2025
Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontario, Canada.
This study, in vivo and in vitro, investigated the role of brain-derived neurotrophic factor (BDNF) in skeletal muscle adaptations to aerobic exercise. BDNF is a contraction-induced protein that may play a role in muscle adaptations to aerobic exercise. BDNF is involved in muscle repair, increased fat oxidation, and mitochondrial biogenesis, all of which are adaptations observed with aerobic training.
View Article and Find Full Text PDFMol Immunol
January 2025
Department of Neurobiology, Harbin Medical University Provincial Key Lab of Neurobiology, School of Basic Medical Science, Harbin Medical University, Heilongjiang, China. Electronic address:
As one of the largest organs of our human body, skeletal muscle has good research prospects in myasthenia gravis (MG), the symptoms of which include systemic skeletal muscle weakness. Skeletal muscle is composed of two types of muscle fibers. Different fiber subtypes can be converted into each other; however, the underlying mechanism is not yet clear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!