Osteogenic regulation of vascular calcification.

Ann N Y Acad Sci

Department of Internal Medicine, Division of Bone and Mineral Diseases, Washington University School of Medicine, Barnes-Jewish Hospital North Campus Box 8301, 660 South Euclid Ave., St. Louis, MO 63110, USA.

Published: April 2006

Vascular calcification increasingly afflicts our aging and dysmetabolic population, predisposing patients to cardiovascular mortality and lower extremity amputation. Active osteogenic processes are evident in most histoanatomic variants, including elaboration of BMP2-Msx2 signals required for craniofacial bone formation. We developed an animal model of diet-induced diabetes, dyslipidemia, and vascular calcification. High-fat diets promote vascular calcification in male low-density lipoprotein receptor (LDLR)-deficient mice, with concomitant upregulation of aortic BMP2 and Msx2 gene expression. We wished to test if Msx2 exerts pro-calcific actions during vascular calcification, as it does in craniofacial bone. We studied CMV-Msx2Tg+;LDLR+ transgenic mice (C57Bl/6), a model previously demonstrated to recapitulate features of Msx2 signaling during craniosynostosis. After 16 weeks of fatty diets, vascular calcification was studied in CMV-Msx2Tg+ versus nontransgenic sibs. Only CMV-Msx2Tg+ mice fed high-fat diets exhibited vascular calcium accumulation by alizarin red staining, noted in the tunica media of coronary arteries and the aorta. Gene expression studies revealed that while Msx2 was expressed primarily in adventitial cells, alkaline phosphatase (ALP) expression and calcification occurred primarily in the tunica media. Msx2 promotes the elaboration of a pro-osteogenic milieu by upregulating expression of Wingless type (Wnt) ligands while downregulating the canonical antagonist, Dickkopf (Dkk1). Msx2 upregulates aortic Wnt signaling in vivo, revealed by the analysis of TOPGAL+ (Wnt reporter) versus CMV-Msx2Tg+; TOPGAL+ mice. Aortic Msx2 exerts pro-osteogenic signaling in vivo and in vitro, mediated in part via the enhancement of paracrine Wnt signaling. Strategies that selectively inhibit aortic Msx2-Wnt cascades may help diminish the initiation and progression of diabetic vascular disease.

Download full-text PDF

Source
http://dx.doi.org/10.1196/annals.1346.036DOI Listing

Publication Analysis

Top Keywords

vascular calcification
24
vascular
8
craniofacial bone
8
high-fat diets
8
gene expression
8
msx2 exerts
8
tunica media
8
wnt signaling
8
signaling vivo
8
calcification
7

Similar Publications

Background: The impact of moderate-to-vigorous physical activity (MVPA) on all-cause mortality in type 2 diabetes (T2D) patients with severe abdominal aortic calcification (SAAC) remains unclear.

Methods: We analyzed data from the National Health and Nutrition Examination Survey (NHANES) 2013-2014, including T2D patients aged 40 years and older. AAC was assessed using the Kauppila scoring system, with SAAC defined as a score >6.

View Article and Find Full Text PDF

Aim: Microcalcification increases the vulnerability of plaques and has become an important driver of acute cardiovascular events in diabetic patients. However, the regulatory mechanisms remain unclear. DJ-1, a multifunctional protein, may play a potential role in the development of diabetic complications.

View Article and Find Full Text PDF

Background: The serum calcification propensity test (or T50 test) might become a standard tool for the assessment of vascular calcification risk and T50 might be a valuable biomarker in clinical trials of treatments intended to slow the progression of vascular calcification. Literature data suggest that non-calcium-containing phosphate binders can influence T50 in chronic dialysed patients. However, it is not clear whether similar interventions are effective in patients at earlier stages of chronic kidney disease (CKD).

View Article and Find Full Text PDF

To establish the extent, distribution and frequency of in-vivo vessel wall [Ga]Ga-PentixaFor uptake and to determine its relationship with calcified atherosclerotic plaque burden (CAP) and cardiovascular risk factors (CVRF). 65 oncological patients undergoing [Ga]Ga-PentixaFor PET/CT were assessed. Radiotracer uptake (target-to-background ratio [TBR]) and CAP burden (including number of CAP sites, calcification circumference and thickness) in seven major vessel segments per patient were determined.

View Article and Find Full Text PDF

OTUB2 contributes to vascular calcification in chronic kidney disease via the YAP-mediated transcription of PFKFB3.

Theranostics

January 2025

Department of Nephrology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China.

Chronic kidney disease (CKD) is a global public health issue, with vascular calcification (VC) being a common and deadly complication. Despite its prevalence, the underlying mechanisms of VC remain unclear. In this study, we aimed to investigate whether and how Otubain-2 (OTUB2) contributes to VC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!