The color changes associated with the aggregation of metal nanoparticles has led to the development of colorimetric-based assays for a variety of target species. We have examined both silver- and gold-based nanoparticles in order to establish whether either metal exhibits optimal characteristics for bioassay development. These silver and gold nanoparticles have been stabilized with a self-assembled monolayer of a mannose derivative (2-mercaptoethyl alpha-d-mannopyranoside) with the aim of inducing aggregation by exploiting the well-known interaction between mannose and the lectin Concanavalin A (Con A). Both metal glyconanoparticles were determined to be ca. 16 nm in diameter (using TEM measurements). Aggregation was observed on addition of Con A to both silver and gold nanoparticles resulting in a shift in the surface plasmon absorption band and a consequent color change of the solution, which was monitored using UV-visible spectrophotometry. Mannose-stabilized silver nanoparticles at a concentration of 3 nM provide an assay for Con A with the largest linear range (between 0.08 and 0.26 microM). Additionally, the kinetic rate of aggregation of the silver-nanoparticle-based bioassay was significantly greater than that of the gold-nanoparticle system. However, in terms of sensitivity, the mannose-stabilized gold-nanoparticle-based assay was optimum with a limit of detection of 0.04 microM Con A, as compared with a value of 0.1 microM obtained for the mannose-stabilized silver nanoparticles. Additionally, a lactose derivative (11-mercapto-3,6,9-trioxaundecyl beta-D-lactoside) was used to stabilize gold nanoparticles to induce aggregation upon addition of the galactose specific lectin Ricinus communis agglutinin (RCA(120)). To examine the specificity of the bioassay, lactose-stabilized gold nanoparticles were mixed with a solution of mannose-stabilized silver nanoparticles to give an aggregation assay capable of detecting two different lectins. When either Con A or RCA(120) was added to the mixed glyconanoparticles, selective recognition of the respective natural ligand was shown by aggregation of a single metal nanoparticle. Centrifugation and removal of the aggregated species enabled further bioassay measurements using the second glyconanoparticle system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la060288r | DOI Listing |
Nanomaterials (Basel)
January 2025
European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy.
The evaluation of nanoplastics bioaccumulation in living organisms is still considered an emerging challenge, especially as global plastic production continues to grow, posing a significant threat to humans, animals, and the environment. The goal of this work is to advance the development of standardized methods for reliable biomonitoring in the future. It is crucial to employ sensitive techniques that can detect and measure nanoplastics effectively, while ensuring minimal impact on the environment.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Materials Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
The safety screening of manufactured nanomaterials (MNMs) is essential for their adoption by consumers and the marketplace. Lately, animal-based testing has been replaced by mechanistically informative in vitro assays due to the requirements of regulatory agencies. Cell viability assays are widely employed for manufactured nanomaterial hazard screening as a first-tier approach.
View Article and Find Full Text PDFBiosensors (Basel)
January 2025
School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China.
MicroRNA122 (miR-122) is a microRNA that is highly expressed in hepatocytes and has been identified as a prospective therapeutic target and biomarker for liver injury. An expanding body of research has demonstrated that miR-122 is a critical regulator in both the initiation and progression of a wide range of liver diseases. Traditional methods for detecting miR-122 mainly include Northern blotting and qRT-PCR, but they are technically complex and cumbersome, requiring expensive instruments and high technical requirements.
View Article and Find Full Text PDFBiosensors (Basel)
January 2025
Furong Labratory, Changsha 410083, China.
A fluorescence probe for "switch-on" detection of alkaline phosphatase (ALP) was developed based on Au nanoclusters anchored MnO nanosheets (Au NCs-MnO NSs), which were synthesized using bovine serum albumin (BSA) as template through a simple one-pot approach. In the sensing system, MnO NSs function as both energy acceptors and target identifiers, effectively quenches the fluorescence of Au NCs via fluorescence resonance energy transfer (FRET). The presence of ALP catalyzes the hydrolysis of L-ascorbic acid-2-phosphate (AAP) to ascorbic acid (AA), reducing MnO NSs to Mn and facilitate the fluorescence recovery of Au NCs.
View Article and Find Full Text PDFBiosensors (Basel)
January 2025
Department of Bioengineering, Faculty of Engineering, Ege University, 35040 Izmir, Türkiye.
Drug abuse is a major public problem in the workplace, traffic, and forensic issues, which requires a standardized test device to monitor on-site drug use. For field testing, the most important requirements are portability, sensitivity, non-invasiveness, and quick results. Motivated by this problem, a point of care (POC) test based on lateral flow assay (LFA) was developed for the detection of cocaine (COC) and methamphetamine (MET) in saliva which has been selected as the matrix for this study due to its rapid and non-invasive collection process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!