The chlamydiae are important human and animal pathogens which form a phylogentically distinct lineage within the Bacteria. There is evidence that some genes in these obligate intracellular parasites have undergone lateral exchange with other free-living organisms. In the present work, we describe two interesting cases of lateral gene transfer between chlamydiae and actinobacteria, which have been identified based on the shared presence of conserved inserts in two important proteins. In the enzyme serine hydroxymethyltransferase (SHMT or GlyA protein), which links amino acid and nucleotide metabolisms by generating the key intermediate for one-carbon transfer reactions, two conserved inserts of 3 and 31 amino acids (aa) are uniquely present in various chlamydiae species as well as in a subset of Actinobacteria and in the Treponema species. Similarly, in the enzyme UDP-N-acetylglucosamine enolpyruvyl transferase (MurA), which is involved in the synthesis of cell wall peptidoglycan, a 16-aa conserved insert is specifically present in various sequenced chlamydiae and a subset of actinobacteria (i.e., Streptomyces, Actinomyces, Tropheryma, Bifidobacterium, Leifsonia, Arthrobacter, and Brevibacterium). To determine the phylogenetic depths of the GlyA and MurA inserts, the fragments of these genes from two chlamydiae-like species, Simkania negevensis and Waddlia chondrophila, were PCR amplified and sequenced. The presence of the corresponding inserts in both these species strongly indicates that these inserts are distinctive characteristics of the Chlamydiales order. In phylogenetic trees based on GlyA and MurA protein sequences, the chlamydiae species (and also the Treponema species in the case of GlyA) branched with a high affinity with various insert-containing actinobacteria within a clade of other actinobacteria. These results provide strong evidence that the shared presence of these indels in these bacteria is very likely a consequence of ancient lateral gene transfers from actinobacteria to chlamydiae. Pairwise sequence identity and the branching pattern of the GlyA homologues in the phylogenetic tree indicates that the glyA gene was initially transferred from an actinobacteria to an ancestor of the Treponema genus and from there it was acquired by the common ancestor of the Chlamydiales.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00239-005-0286-xDOI Listing

Publication Analysis

Top Keywords

serine hydroxymethyltransferase
8
udp-n-acetylglucosamine enolpyruvyl
8
enolpyruvyl transferase
8
transferase mura
8
actinobacteria
8
lateral gene
8
shared presence
8
conserved inserts
8
chlamydiae species
8
subset actinobacteria
8

Similar Publications

Bacterial and eukaryotic dihydrofolate reductase (DHFR) enzymes are essential for DNA synthesis and are differentially sensitive to the competitive inhibitors trimethoprim and methotrexate. Unexpectedly, trimethoprim did not reduce abundance, and the Stri DHFR homolog contained amino acid substitutions associated with trimethoprim resistance in . A phylogenetic tree showed good association of DHFR protein sequences with supergroup A and B assignments.

View Article and Find Full Text PDF

Many essential proteins require pyridoxal 5'-phosphate, the active form of vitamin B6, as a cofactor for their activity. These include enzymes important for amino acid metabolism, one-carbon metabolism, polyamine synthesis, erythropoiesis, and neurotransmitter metabolism. A third of all mammalian pyridoxal 5'-phosphate-dependent enzymes are localized in the mitochondria; however, the molecular machinery involved in the regulation of mitochondrial pyridoxal 5'-phosphate levels in mammals remains unknown.

View Article and Find Full Text PDF

The sulfur-related metabolic status of during infection reveals cytosolic serine hydroxymethyltransferase as a promising antifungal target.

Virulence

December 2025

Manchester Fungal Infection Group (MFIG), Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.

Sulfur metabolism is an essential aspect of fungal physiology and pathogenicity. Fungal sulfur metabolism comprises anabolic and catabolic routes that are not well conserved in mammals, therefore is considered a promising source of prospective novel antifungal targets. To gain insight into sulfur-related metabolism during infection, we used a NanoString custom nCounter-TagSet and compared the expression of 68 key metabolic genes in different murine models of invasive pulmonary aspergillosis, at 3 time-points, and under a variety of conditions.

View Article and Find Full Text PDF

SHMT2 regulates CD8+ T cell senescence via the reactive oxygen species axis in HIV-1 infected patients on antiretroviral therapy.

EBioMedicine

January 2025

State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, NHC Key Laboratory of AIDS Prevention and Treatment, National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, China Medical University, Shenyang, 110001, China; Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China; Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, 110001, China. Electronic address:

Background: Although antiretroviral therapy (ART) effectively inhibits viral replication, it does not fully mitigate the immunosenescence instigated by HIV infection. Cellular metabolism regulates cellular differentiation, survival, and senescence. Serine hydroxymethyltransferase 2 (SHMT2) is the first key enzyme for the entry of serine into the mitochondria from the de novo synthesis pathway that orchestrates its conversion glutathione (GSH), a key molecule in neutralising ROS and ensuring the stability of the immune system.

View Article and Find Full Text PDF

Binding of a potential antibacterial drug, mangiferin, to serine hydroxymethyltransferase from Enterococcus faecium.

Biochem Biophys Res Commun

January 2025

Division of Biomedical Measurements and Diagnostics, Graduate School of Biomedical Engineering, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan. Electronic address:

Serine hydroxymethyltransferase (SHMT) plays a critical role in the 1C metabolism pathway. This pathway is involved in the synthesis of many amino and nucleic acids, and SHMT is considered a target for drugs through folate metabolism, especially for cancer and malaria. A detailed analysis of the interactions between SHMTs and drugs will greatly contribute to the development of new drugs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!