A 1.8-year-old male required a conventional DDD pacemaker for an atrioventricular block after congenital heart surgery. Five years later, heart failure due to left ventricular (LV) dyssynchrony progressed and we performed cardiac resynchronization therapy (CRT). Long-term echocardiographic follow-up showed that LV shortening fraction had improved within the first year after CRT, and LV end diastolic dimension had decreased after the first year. During LV remodeling (1-24 months after CRT), the QRS duration shortened without a change in the JT and T (peak-end) interval. The New York Heart Association class improved from III to I during the 2.3-year follow-up.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00246-006-1234-2 | DOI Listing |
J Interv Card Electrophysiol
January 2025
Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan.
Background: Non-response to cardiac resynchronization therapy (CRT) is an important issue in the treatment of heart failure with reduced ejection fraction (HFrEF) and non-left bundle branch block (LBBB). Electrocardiogram-gated myocardial perfusion single-photon emission computed tomography imaging (G-MPI SPECT) is typically used to assess left ventricular (LV) dyssynchrony. This study aimed to determine whether G-MPI parameters are associated with non-responsiveness to CRT.
View Article and Find Full Text PDFFront Cardiovasc Med
December 2024
Department of Cardiology, University of Medicine and Pharmacy of Craiova, Craiova, Romania.
Cardiac resynchronization therapy (CRT) offers significant benefits in symptom alleviation, reduction of rehospitalization rates, and overall survival of patients with heart failure (HF) with reduced ejection fraction (rEF). However, despite its proven efficacy, precisely identifying suitable CRT candidates remains a challenge, with a notable proportion of patients experiencing non-response. Accordingly, many attempts have been made to enhance patient selection, and to identify the best imaging parameters to predict the response and survival after CRT implantation.
View Article and Find Full Text PDFKardiol Pol
January 2025
Department of Cardiology, Division of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Silesian Center for Heart Diseases, Zabrze, Poland.
Heart Rhythm
December 2024
Christian-Albrechts-University, Medical Faculty, Christian-Albrechts-Platz 4, 24118 Kiel, Germany; University of Applied Science, Life Sciences, An der Karlstadt 8, 27568 Bremerhaven, Germany. Electronic address:
Left bundle branch block (LBBB) causes immediate electrical and mechanical dys-synchrony of the left ventricle (LV) and gradual structural damages in the Purkinje cells and myocardium. Mechanical dys-synchrony reduces the LV ejection fraction (EF) instantly, but only to ≈55% in an otherwise normal heart. Because of the heart's in-built functional redundancy, a patient with LBBB does not always notice the heart's reduced efficiency straight away.
View Article and Find Full Text PDFRev Cardiovasc Med
December 2024
Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, 116014 Dalian, Liaoning, China.
Existing techniques for pacing the right ventricle and providing cardiac resynchronization therapy through biventricular pacing are not effective in restoring damage to the conduction system. Therefore, the need for new pacing modalities and techniques with more sensible designs and algorithms is justified. Although the benefits of conduction system pacing (CSP), which mainly include His bundle pacing (HBP) and left bundle branch area pacing (LBBAP), are evident in patients who require conduction system recuperation, the critical criteria for left CSP remain unclear, and the roles of different pacing modalities of CSP for cardiac resynchronization are not definite.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!