Objective: We sought to investigate feasibility of vasa vasorum imaging using the novel technique of contrast harmonic intravascular ultrasound.
Methods: Prototype intravascular ultrasound (IVUS) instrumentation was developed for the sensitive detection of micro-bubble contrast agents. The technique, "harmonic" imaging, involves transmitting ultrasound at 20 MHz (fundamental) and detecting contrast signals at 40 MHz (second harmonic). Phantom experiments were conducted to investigate the detection of a small vessel in the wall surrounding a larger vessel. In vivo experiments were conducted in atherosclerotic rabbit abdominal aortas.
Results: The phantom experiments showed improved small vessel detection in harmonic mode relative to fundamental mode. For the in vivo experiments, harmonic imaging enabled the visualization of contrast agent outside the aortic lumen through a statistically significant (P < 0.001) enhancement of image power, consistent with the detection of adventitial microvessels. These microvessels were not detected in fundamental imaging mode.
Conclusions: These results indicate the feasibility of contrast harmonic intravascular ultrasound as a new technique for vasa vasorum imaging.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/01.rli.0000229773.11715.da | DOI Listing |
Inorg Chem
January 2025
Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
-site cation ordering in double perovskites is crucially important for their physical properties. In this study, polycrystalline samples of Zr-based double perovskite NaLaZrO were synthesized via high-temperature solid-state reactions, and the influence of the heating temperature and cooling rate on their crystal structures was investigated using synchrotron X-ray diffractometry and optical second harmonic generation. The samples prepared at 1200 °C, followed by slow cooling to room temperature, crystallize in a polar 2 structure, exhibiting partial -site cation ordering, with Na- and La-rich -site layers alternately stacked along the axis.
View Article and Find Full Text PDFACS Mater Au
January 2025
Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel.
Gas bubbles, commonly used in medical ultrasound (US), witness advancements with nanobubbles (NB), providing improved capabilities over microbubbles (MB). NBs offer enhanced penetration into capillaries and the ability to extravasate into tumors following systemic injection, alongside prolonged circulation and persistent acoustic contrast. Low-frequency insonation (<1 MHz) with NBs holds great potential in inducing significant bioeffects, making the monitoring of their acoustic response critical to achieving therapeutic goals.
View Article and Find Full Text PDFMolecules
December 2024
Department of Physical and Quantum Chemistry, Wrocław University of Science and Technology, 50-370 Wrocław, Poland.
We report the results of calculations of the linear polarizability and second hyperpolarizability of the H molecule in the bond dissociation process. These calculations were performed for isolated molecules, as well as molecules under spatial confinement. The spatial confinement was modeled using the external two-dimensional (cylindrical) harmonic oscillator potential.
View Article and Find Full Text PDFCommun Biol
January 2025
Department of Bioengineering, Imperial College London, South Kensington, London, SW7 2AZ, UK.
Form-function relationships often have tradeoffs: if a material is tough, it is often inflexible, and vice versa. This is particularly relevant for the elephant trunk, where the skin should be protective yet elastic. To investigate how this is achieved, we used classical histochemical staining and second harmonic generation microscopy to describe the morphology and composition of elephant trunk skin.
View Article and Find Full Text PDFJMIR Form Res
January 2025
Department of Health Administration, The College of Health Professions, Central Michigan University, Mt Pleasant, MI, United States.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!