Herbivore-induced resistance against microbial pathogens in Arabidopsis.

Plant Physiol

Graduate School of Experimental Plant Sciences, Section of Phytopathology, Institute of Environmental Biology, Utrecht University, 3508 TB Utrecht, The Netherlands.

Published: September 2006

Caterpillars of the herbivore Pieris rapae stimulate the production of jasmonic acid (JA) and ethylene (ET) in Arabidopsis (Arabidopsis thaliana) and trigger a defense response that affects insect performance on systemic tissues. To investigate the spectrum of effectiveness of P. rapae-induced resistance, we examined the level of resistance against different pathogens. Although the necrotrophic fungus Alternaria brassicicola is sensitive to JA-dependent defenses, herbivore-induced resistance was not effective against this pathogen. By contrast, caterpillar feeding significantly reduced disease caused by the bacterial pathogens Pseudomonas syringae pv tomato and Xanthomonas campestris pv armoraciae. However, this effect was apparent only locally in caterpillar-damaged tissue. Arabidopsis mutants jar1, coi1, ein2, sid2, eds5, and npr1 showed wild-type levels of P. rapae-induced protection against P. syringae pv tomato, suggesting that this local, herbivore-induced defense response does not depend exclusively on either JA, ET, or salicylic acid (SA). Resistance against the biotroph Turnip crinkle virus (TCV) requires SA, but not JA and ET. Nevertheless, herbivore feeding strongly affected TCV multiplication and TCV lesion formation, also in systemic tissues. Wounding alone was not effective, but application of P. rapae regurgitate onto the wounds induced a similar level of protection. Analysis of SA-induced PATHOGENESIS RELATED-1 (PR-1) expression revealed that P. rapae grazing primed Arabidopsis leaves for augmented expression of SA-dependent defenses. Pharmacological experiments showed that ET acts synergistically on SA-induced PR-1, suggesting that the increased production of ET upon herbivore feeding sensitizes the tissue to respond faster to SA, thereby contributing to an enhanced defensive capacity toward pathogens, such as TCV, that trigger SA-dependent defenses upon infection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1557608PMC
http://dx.doi.org/10.1104/pp.106.083907DOI Listing

Publication Analysis

Top Keywords

herbivore-induced resistance
8
defense response
8
systemic tissues
8
syringae tomato
8
herbivore feeding
8
sa-dependent defenses
8
arabidopsis
5
resistance microbial
4
pathogens
4
microbial pathogens
4

Similar Publications

Transcriptional Reprogramming Deploys a Compartmentalized 'Timebomb' in Catharanthus roseus to Fend Off Chewing Herbivores.

Plant Cell Environ

December 2024

Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, Kentucky, USA.

The evolutionary arms race between plants and insects has led to key adaptive innovations that drive diversification. Alkaloids are well-documented anti-herbivory compounds in plant chemical defences, but how these specialized metabolites are allocated to cope with both biotic and abiotic stresses concomitantly is largely unknown. To examine how plants prioritize their metabolic resources responding to herbivory and cold, we integrated dietary toxicity bioassay in insects with co-expression analysis, hierarchical clustering, promoter assay, and protein-protein interaction in plants.

View Article and Find Full Text PDF

A defensive pathway from NAC and TCP transcription factors activates a BAHD acyltransferase for (Z)-3-hexenyl acetate biosynthesis to resist herbivore in tea plant (Camellia sinensis).

New Phytol

February 2025

State Key Laboratory of Tea Plant Biology and Utilization/Anhui Provincial Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China.

Numerous herbivore-induced plant volatiles (HIPVs) play important roles in plant defense. In tea plants (Camellia sinensis), (Z)-3-hexenyl acetate (3-HAC) has been characterized as associated with resistance to herbivores. To date, how tea plants biosynthesize and regulate 3-HAC to resist herbivores remain unclear.

View Article and Find Full Text PDF

Theories have been widely proposed and tested for impacts of soil nitrogen (N) on phytochemical defenses. Among the hundreds of distinct cardenolide toxins produced by milkweeds (Asclepias spp.), few contain N, yet these appear to be the most toxic against specialist herbivores.

View Article and Find Full Text PDF

As primary producers, plants play a central role in mediating interactions across trophic levels. Although plants are the primary food source for herbivorous insects, they can protect themselves from herbivore damage. Many plants produce toxic compounds that directly reduce herbivore feeding, but plants also protect themselves indirectly by attracting natural enemies of the attacking herbivore through volatile signaling.

View Article and Find Full Text PDF

Effects of Elevated CO and O on Aboveground Brassicaceous Plant-Insect Interactions.

Annu Rev Entomol

October 2024

2Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland.

Atmospheric gases, such as carbon dioxide (CO) and ozone (O), influence plant-insect interactions, with variable effects. The few studies that have investigated the direct effects of elevated CO (eCO; 750-900 ppm) or elevated O (eO; 60-200 ppb) on insects have shown mixed results. Instead, most research has focused on the indirect effects through changes in the host plant.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!