Gross alterations in cell energy metabolism underlie manifestations of hereditary OXPHOS (oxidative phosphorylation) diseases, many of which depend on proportion of mutant mitochondrial DNA (mtDNA) in tissues. An animal model of OXPHOS disease with maternal inheritance of mitochondrial heteroplasmy might help understanding the peculiarities of abnormal mtDNA distribution and its effect on pre- and postnatal development. Previously we obtained mice that carry human mtDNA in some tissues. It co-existed with murine mtDNA (heteroplasmy) and was transmitted maternally to the progeny of animals developed from zygotes injected with human mitochondria. To analyze the probability of obtaining heteroplasmic mice we increased the number of experiments with early embryos and obtained more specimens from F1. About 33% of zygotes injected with human mtDNA developed into post-implantation embryos (7th-13th days). Lower amount of such developed into neonate mice (ca. 21%). Among post-implantation embryos and in generations F0 and F1 percentages of human mtDNA-carriers were ca. 14-16%. Such percentages are sufficient for modeling maternally inherited heteroplasmy in small animal groups. More data are needed to understand the regularities of anomalous mtDNA distribution among cells and tissues and whether heart and muscles frequently carrying human mtDNA in our experiments are particularly susceptible to heteroplasmy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbabio.2006.05.021DOI Listing

Publication Analysis

Top Keywords

human mtdna
12
maternally inherited
8
inherited heteroplasmy
8
mtdna tissues
8
mtdna distribution
8
zygotes injected
8
injected human
8
post-implantation embryos
8
mtdna
7
heteroplasmy
5

Similar Publications

Mitochondrial DNA oxidation and content in different metabolic phenotypes of women with polycystic ovary syndrome.

Front Endocrinol (Lausanne)

January 2025

Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Universidad de Buenos Aires, Buenos Aires, Argentina.

Introduction: Polycystic Ovary Syndrome (PCOS) affects 5-20% of reproductive-aged women. Insulin resistance (IR) is common in PCOS with consequent elevated risks of metabolic disorders and cardiovascular mortality. PCOS and obesity are complex conditions associated with Metabolic Syndrome (MS), contributing to cardiovascular disease and type 2 diabetes mellitus (T2D).

View Article and Find Full Text PDF

Background: Vascular endothelial growth factor (VEGF) and VEGF receptor (VEGFR) inhibitors play a pivotal role in treating various tumors; however, the clinical characteristics and molecular mechanisms of their associated heart failure (HF) remain incompletely understood.

Methods: We investigated the epidemiological characteristics of VEGF or VEGFR inhibitors [VEGF(R)i]-related heart failure (VirHF) using the global pharmacovigilance database Vigibase. The phenotypic features and molecular mechanisms of VirHF were characterized using VEGF(R)i-treated mouse models through a combination of echocardiography, histopathological analysis, and transcriptome sequencing.

View Article and Find Full Text PDF

Effects of photobiomodulation in mitochondrial quantity, biogenesis and mitophagy-associated genes in breast cancer cells.

Lasers Med Sci

January 2025

Departamento de Biofísica e Biometria Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Avenida 28 de Setembro, 87, fundos, Vila Isabel, Rio de Janeiro, 20551030, Brazil.

In this article, we aim to evaluate the effects of photobiomodulation on mitochondria quantity, biogenesis, and mitophagy-associated genes in breast cancer (BC) cells. Both models were irradiated with a low-power infrared laser (880 nm, 150 mW) and amber LED (617 nm, 1500 mW), alone or simultaneously. We evaluated the mRNA expression of PINK1 and PGC-1α genes, and the mitochondrial number was assessed based on the ratio of mitochondrial DNA/genomic DNA (mtDNA/gDNA).

View Article and Find Full Text PDF

Evaluating genome-wide and targeted forensic sequencing approaches to kinship determination.

Forensic Sci Int Genet

January 2025

Department of Genetics, Genomics & Cancer Sciences, University of Leicester, University Road, Leicester, UK. Electronic address:

Kinship determination is a valuable tool in forensic genetics, with applications including familial searching, disaster victim identification, and investigative genetic genealogy. Conventional typing of small numbers of autosomal short tandem repeats (STRs) confidently identifies only first-degree relatives. Massively parallel sequencing (MPS) can access more STRs and resolve alleles identical by length but differing in sequence (isoalleles), which may increase the power of kinship estimation, particularly when combined with additional sequenced single nucleotide polymorphism (SNP) loci, as in the ForenSeq DNA Signature Prep kit.

View Article and Find Full Text PDF

Objective: To investigate the role of PCBP1 in the inhibition of lung adenocarcinoma proliferation by carbon irradiation.

Methods: A549 cells were irradiated with different doses of carbon ions to observe clonal survival and detect changes in cell proliferation. Whole transcriptome sequencing and the Illumina platform were used to analyze the differentially expressed genes in A549 cells after carbon ion irradiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!