Ferritin gene expression is complex and is controlled at transcriptional level in response to a variety of stimuli such as hormones, cytokines and cAMP. Iron, hemin and several compounds, chemically different, also activate the transcription of the ferritin gene. Ferritin biosynthesis is mainly regulated at post-transcriptional level by iron regulatory proteins (IRP1 and IRP2). We previously reported that oxalomalate, a competitive inhibitor of aconitase, remarkably decreases the IRP1 RNA-binding activity and induces a significant increase of ferritin expression. Here, we examined in cells cultured in presence of OMA the IRP1 intracellular content, ferritin biosynthesis and the transcriptional efficiency of H-ferritin gene promoter. Our results demonstrate a peculiar role of OMA that rapidly inactivates IRP1 without affecting IRP1 protein content and subsequently activates H-ferritin gene transcription leading to an overall increase of ferritin biosynthesis. We conclude that OMA regulates H-ferritin biosynthesis acting early at the post-transcriptional level and later on at transcriptional level.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbamcr.2006.03.010DOI Listing

Publication Analysis

Top Keywords

ferritin biosynthesis
12
ferritin gene
8
transcriptional level
8
post-transcriptional level
8
increase ferritin
8
h-ferritin gene
8
ferritin
6
irp1
5
induction h-ferritin
4
h-ferritin synthesis
4

Similar Publications

Introduction: Iron-mediated cell death (ferroptosis) is a proposed mechanism of Alzheimer's disease (AD) pathology. While iron is essential for basic biological functions, its reactivity generates oxidants which contribute to cell damage and death.

Methods: To further resolve mechanisms of iron-mediated toxicity in AD, we analyzed post mortem human brain and ApoEFAD mice.

View Article and Find Full Text PDF

Assembly of Genetically Engineered Ionizable Protein Nanocage-based Nanozymes for Intracellular Superoxide Scavenging.

Nat Commun

January 2025

Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontier of Science Center for Cell Response, Nankai University, Tianjin, 300071, China.

Nanozymes play a pivotal role in mitigating excessive oxidative stress, however, determining their specific enzyme-mimicking activities for intracellular free radical scavenging is challenging due to endo-lysosomal entrapment. In this study, we employ a genetic engineering strategy to generate ionizable ferritin nanocages (iFTn), enabling their escape from endo-lysosomes and entry into the cytoplasm. Specifically, ionizable repeated Histidine-Histidine-Glutamic acid (9HE) sequences are genetically incorporated into the outer surface of human heavy chain FTn, followed by the assembly of various chain-like nanostructures via a two-armed polyethylene glycol (PEG).

View Article and Find Full Text PDF

Background: Community-acquired pneumonia (CAP) poses a significant health threat to the elderly population, leading to high morbidity and mortality rates. Serum ferritin, a critical indicator of iron metabolism, plays a pivotal role in inflammation and immune regulation. Nevertheless, its specific prognostic relevance in elderly patients with CAP remains unclear.

View Article and Find Full Text PDF

Background: Iron deficiency (ID) is the most common nutritional deficiency among patients undergoing major surgery. Treatment of ID is straightforward, however implementing a comprehensive anemia management strategy within clinical routines is complex. Recently, reticulocyte hemoglobin content (Ret-He) has been evaluated as an early marker for ID diagnosis.

View Article and Find Full Text PDF

Self-assembling ferritin nanoparticle technology is a widely used vaccine development platform for enhancing the efficacy of subunit vaccines by displaying multiple antigens on nanocages. The dengue virus (DENV) envelope domain III (EDIII) protein, the most promising antigen for DENV, has been applied in vaccine development, and it is essential to evaluate the relative immunogenicity of the EDIII protein and EDIII-conjugated ferritin to show the efficiency of the ferritin delivery system compared with EDIII. In this study, we optimized the conditions for the expression of the EDIII protein in , protein purification, and refolding, and these optimization techniques were applied for the purification of EDIII ferritin nanoparticles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!