A novel cervical cancer suppressor 3 (CCS-3) interacts with the BTB domain of PLZF and inhibits the cell growth by inducing apoptosis.

FEBS Lett

Molecular Therapy Research Center, Sungkyunkwan University, Samsung Medical Center Annex 8F, 50 Ilwon-Dong, Kangnam-Ku, Seoul 135-710, South Korea.

Published: July 2006

AI Article Synopsis

Article Abstract

Promyelocytic leukemia zinc finger protein (PLZF) is a sequence-specific, DNA binding, transcriptional repressor differentially expressed during embryogenesis and in adult tissues. PLZF is known to be a negative regulator of cell cycle progression. We used PLZF as bait in a yeast two-hybrid screen with a cDNA library from the human ovary tissue. A novel cervical cancer suppressor 3 (CCS-3) was identified as a PLZF interacting partner. Further characterization revealed the BTB domain as an interacting domain of PLZF. Interaction of CCS-3 with PLZF in mammalian cells was also confirmed by co-immunoprecipitation and in vitro binding assays. It was found that, although CCS-3 shares similar homology with eEF1A, the study determined CCS-3 to be an isoform. CCS-3 was observed to be downregulated in human cervical cell lines as well as in cervical tumors when compared to those from normal tissues. Overexpression of CCS-3 in human cervical cell lines inhibits cell growth by inducing apoptosis and suppressing human cyclin A2 promoter activity. These combined results suggest that the potential tumor suppressor activity of CCS-3 may be mediated by its interaction with PLZF.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.febslet.2006.06.047DOI Listing

Publication Analysis

Top Keywords

novel cervical
8
cervical cancer
8
cancer suppressor
8
ccs-3
8
suppressor ccs-3
8
btb domain
8
plzf
8
domain plzf
8
inhibits cell
8
cell growth
8

Similar Publications

Role of Fungi in Tumorigenesis: Promises and Challenges.

Annu Rev Pathol

January 2025

Department of Molecular Pathobiology, NYU College of Dentistry, New York, NY, USA;

The mycobiome plays a key role in the host immune responses in homeostasis and inflammation. Recent studies suggest that an imbalance in the gut's fungi contributes to chronic, noninfectious diseases such as obesity, metabolic disorders, and cancers. Pathogenic fungi can colonize specific organs, and the gut mycobiome has been linked to the development and progression of various cancers, including colorectal, breast, head and neck, and pancreatic cancers.

View Article and Find Full Text PDF

: Inflammatory biomarkers have been shown to possess both prognostic and predictive significance in various cancers. Among the emerging biomarkers, the pan-immune-inflammation value (PIV) has recently been introduced as a novel indicator representing both the immune response and the systemic inflammatory state. This study aims to comprehensively evaluate the predictive value of inflammatory biomarkers on survival outcomes in cervical cancer patients undergoing chemoradiotherapy.

View Article and Find Full Text PDF

Advances in Structural Types and Pharmacochemistry of CDK12 Inhibitors.

Med Chem

January 2025

Key Laboratory of Traditional Chinese Medicine Research and Development of Hebei Province, Institute of Traditional Chinese Medicine, Chengde Medical University, Chengde 067000, P.R. China.

Cyclin-Dependent Kinase (CDK) 12 is a member of the 20-membered CDK family (CDK1-20) and plays a vital role in regulating gene transcription, mRNA splicing, translation, cell cycle, and repair of DNA damage. CDK12 is an emerging therapeutic target due to its role in regulating the transcription of DNA Damage Response (DDR) genes in Cyclin-Dependent Kinase (CDK). However, the development of selective small molecules targeting CDK12 has been challenging due to the high degree of homology between kinase domains of CDK12 and other transcriptional CDKs, most notably CDK13.

View Article and Find Full Text PDF

Introduction: The earlier detection of cervical cancer in women patients can save human life. This article proposes a novel methodology for detecting abnormal cervigram images from healthy cervigram images and segments the cancer regions in the abnormal cervigram images using the deep learning method. The conventional deep learning architecture has been modified into the proposed CervixNet architecture to improve the cervical cancer detection rate.

View Article and Find Full Text PDF

MTIOT: Identifying HPV subtypes from multiple infection data.

Comput Struct Biotechnol J

December 2024

Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China.

Persistent infection with high-risk human papillomavirus (hrHPV) is a major cause of cervical cancer. The effectiveness of current HPV-DNA testing, which is crucial for early detection, is limited in several aspects, including low sensitivity, accuracy issues, and the inability to perform comprehensive hrHPV typing. To address these limitations, we introduce MTIOT (Multiple subTypes In One Time), a novel detection method that utilizes machine learning with a new multichannel integration scheme to enhance HPV-DNA analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!