Two strategies of metabolic engineering have been used, individually or combined, to alter the metabolic flux to improve the production of S-adenosyl-L-methionine (SAM) in Pichia pastoris. One is over expressing SAM synthase by knock-in technique, the other is the disruption of cystathionine-beta synthase (CBS) by knock-out technique. Strain Gsam with ectopic SAM synthase gene produced 20 times of SAM comparing to the starter strain GS115. Disruption of CBS in GS115 only doubled its SAM production. However, disruption of CBS in Gsam results in a robust increase of SAM production, more than 56 times of the strain GS115. Thus, we report for the first time a synergistic effect on the production of SAM in yeast by the combination of knock-in and knock-out techniques. Furthermore, we optimize the cultural conditions for the genetically modified strain Gsam-cbs to produce SAM. The maximum yield of SAM reaches 3.6g/L in shake flask and 13.5g/L in a 5L fermentor, indicating that it could be used for industrial fermentation to produce large scale of SAM.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiotec.2006.05.009DOI Listing

Publication Analysis

Top Keywords

sam
10
synergistic production
8
production s-adenosyl-l-methionine
8
pichia pastoris
8
cystathionine-beta synthase
8
sam synthase
8
strain gs115
8
disruption cbs
8
sam production
8
synthase
5

Similar Publications

Background: Severe acute malnutrition (SAM) is a severe condition causing bilateral pitting edema or signs of wasting in children, with a high mortality risk. An outpatient therapeutic program is recommended for managing SAM children without complications, but there is limited information on recovery time and its determinants.

Objective: This study aims to assess the time to recovery and its predictors among children aged 6-59 months with SAM admitted to the Outpatient therapeutic program in the Borena zone, Oromia region, Southern Ethiopia in 2023.

View Article and Find Full Text PDF

Introduction: Many breast cancer therapeutics target the PI3K/AKT/mTOR oncogenic pathway. Development of resistance to the therapeutics targeting this pathway is a frequent occurrence. Therapeutics targeting p70S6K1, a downstream member of this pathway, have recently gained importance due to its critical role in all types of breast cancer and its status as a prognostic marker.

View Article and Find Full Text PDF

Background: Ventilator-associated pneumonia (VAP) is one of the most lethal complications in intensive care unit (ICU) patients. However, critical issues of non-survivors vary and are still unclear in VAP patients.

Methods: The clinical differences between survivors and non-survivors of VAP were retrospectively analyzed in patients hospitalized from April 2023 to March 2024.

View Article and Find Full Text PDF

Self-assembled hole-selective contact for efficient Sn-Pb perovskite solar cells and all-perovskite tandems.

Nat Commun

January 2025

College of Materials Science and Engineering & Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu, China.

Self-assembled monolayers (SAMs) have displayed unpredictable potential in efficient perovskite solar cells (PSCs). Yet most of SAMs are largely suitable for pure Pb-based devices, precisely developing promising hole-selective contacts (HSCs) for Sn-based PSCs and exploring the underlying general mechanism are fundamentally desired. Here, based on the prototypical donor-acceptor SAM MPA-BT-BA (BT), oligoether side chains with different length (i.

View Article and Find Full Text PDF

Arsenic (As) is a toxic metalloid widespread in the environment, and its exposure has been associated with a variety of adverse health outcomes. As exposure is demonstrated to cause nonalcoholic fatty liver disease (NAFLD), and the underlying epigenetic mechanisms remain largely unknown. This study aimed to investigate the roles of histone modifications in low-level As exposure-induced NAFLD in rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!