Temperature-sensitive cloning vector for Corynebacterium glutamicum.

Plasmid

Fermentation and Biotechnology Laboratories, Ajinomoto CO., Inc., Kawasaki-shi, Kanagawa 210-8681, Japan.

Published: November 2006

We constructed a temperature-sensitive form of the Corynebacterium glutamicum ATCC13869 cryptic plasmid, pBL1. The C. glutamicum/Escherichia coli shuttle vector pSFK6, which is composed of pBL1 and the E. coli cloning vector pK1, was mutagenized in vitro by treatment with hydroxylamine, and introduced into C. glutamicum cells. A mutant plasmid, which was stably maintained at 25 degrees C but not at 34 degrees C, was isolated from the cells. Sequencing the plasmid, which was named p48K, revealed four substitutions in the Rep protein coding region. Moreover, site-directed single-nucleotide substitutions showed that a G to A transition at position 2,920, which resulted in a Pro-47 to Ser substitution in the Rep protein, was responsible for its temperature-sensitive replication. Pro-47 is conserved among the Rep proteins of the pIJ101/pJV1 family of plasmids. This temperature-sensitive cloning vector will be useful for disrupting genes in this industrially important bacterium.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plasmid.2006.05.003DOI Listing

Publication Analysis

Top Keywords

cloning vector
12
temperature-sensitive cloning
8
corynebacterium glutamicum
8
rep protein
8
temperature-sensitive
4
vector
4
vector corynebacterium
4
glutamicum constructed
4
constructed temperature-sensitive
4
temperature-sensitive form
4

Similar Publications

Integrative taxonomy of the genus Pseudoacanthocephalus (Acanthocephala: Echinorhynchida) in China, with the description of two new species and the characterization of the mitochondrial genomes of Pseudoacanthocephalus sichuanensis sp. n. and Pseudoacanthocephalus nguyenthileae.

Parasit Vectors

December 2024

Hebei Collaborative Innovation Center for Eco-Environment, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei Province, People's Republic of China.

Background: Acanthocephalans (thorny headed worms) of the genus Pseudoacanthocephalus mainly parasitize amphibians and reptiles across the globe. Some species of the genus Pseudoacanthocephalus also can accidentally infect human and cause human acanthocephaliasis. Current knowledge of the species composition of the genus Pseudoacanthocephalus from amphibians and reptiles in China is incomplete.

View Article and Find Full Text PDF

The production of lipopolysaccharide (LPS)-free recombinant proteins from culture supernatants is of great interest to biomedical research and industry. Due to the LPS-free cell wall structure and the well-defined secretion factor B (SecB)-dependent secretion pathway, Gram-positive bacteria are a superior alternative to Escherichia coli expression systems. However, the lack of inducible expression systems for high yields has been a bottleneck.

View Article and Find Full Text PDF

The establishment of reliable and efficient systems for genome editing in Phytophthora is very important for studying gene functions. Here, step-by-step methods for CRISPR/Cas9-based gene knockout and in situ complementation for Phytophthora sojae are presented. These steps include the sgRNA design, Cas9-sgRNA plasmid construction, homologous replacement, complementation vector construction, P.

View Article and Find Full Text PDF

Molecular genetic tools such as CRISPR-Cas gene editing systems are invaluable for understanding gene and protein function and revealing the details of a pathogen's life and disease cycles. Here we present protocols for genome editing in Phytophthora infestans, an oomycete with global importance as a pathogen of potato and tomato. Using a vector system that expresses variants of Cas12a from Lachnospiraceae bacterium and its guide RNA from a unified transcript, we first present a method for editing genes through the non-homologous end-joining (NHEJ) pathway.

View Article and Find Full Text PDF

Gene therapy for sickle cell disease: recent advances, clinical trials and future directions.

Cytotherapy

December 2024

Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA.

Sickle cell disease (SCD) is the most common inherited blood disorder worldwide, impacting millions and imposing severe healthcare challenges, particularly in resource-limited regions. Current treatments have variable efficacy and require lifelong adherence. Allogeneic Hematopoietic Stem Cell Transplantation can be curative but comes with significant side effects and limited donor availability limits its widespread applicability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!