AI Article Synopsis

Article Abstract

Branched chain aminotransferase (BCAT) catalyzes the transamination of the essential branched chain amino acids (leucine, isoleucine and valine) with alpha-ketoglutarate. BCAT exists in two isoforms: one cytosolic (BCATc), mainly expressed in the nervous system, and the other mitochondrial (BCATm), present in a greater number of tissues. We previously showed that BCATc mRNA and protein expression in the dorsal lateral geniculate nucleus of the thalamus is up-regulated by exogenous administration of brain-derived neurotrophic factor (BDNF) following lesion of the visual cortex in newborn rats. Here, we analyzed the expression of BCATc mRNA in the brain of transgenic mice overexpressing the rat BDNF cDNA under the control of the alpha-calcium/calmodulin-dependent kinase II (alphaCaMKII) promoter. In these animals, BDNF is overexpressed in the telencephalon starting from the second postnatal week. RT-PCR and in situ hybridization experiments showed that BCATc mRNA is overexpressed in restricted regions of the cerebral cortex (parietal area) and hippocampus (hilus and CA3 pyramidal cell layer) of adult BDNF transgenic mice respect to wild-type animals. These differences between wt and BDNF mice were not detected in animals of 1 week of age. These results demonstrate that the expression of the BCATc gene in the brain is specifically regulated by BDNF in a time- and region-dependent fashion.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainres.2006.06.012DOI Listing

Publication Analysis

Top Keywords

bcatc mrna
16
branched chain
12
transgenic mice
12
chain aminotransferase
8
bdnf transgenic
8
expression bcatc
8
bdnf
7
bcatc
6
cytosolic branched
4
aminotransferase bcatc
4

Similar Publications

Deficient branched-chain amino acids (BCAAs) are implicated in cognitive dysfunction after traumatic brain injury (TBI). The mechanism remains unknown. BCAAs are catabolized by neuron-specific cytosolic and astrocyte-specific mitochondrial branched-chain aminotransferases (BCATc, BCATm) to generate glutamate and branched-chain keto-acids (BCKAs) that are metabolized by the mitochondrial branched-chain keto-acid dehydrogenase (BCKD) whose activity is regulated by its phosphorylation state.

View Article and Find Full Text PDF

Branched-chain aminotransferase (BCAT) catalyzes the transamination of essential branched-chain amino acids (BCAAs: leucine, isoleucine and valine) with alpha-ketoglutarate. Through this reaction, BCAAs provide nitrogen for the synthesis of glutamate, the predominant excitatory neurotransmitter. Two BCAT isoforms have been identified: one cytosolic (BCATc) and one mitochondrial (BCATm).

View Article and Find Full Text PDF

Branched chain aminotransferase (BCAT) catalyzes the transamination of the essential branched chain amino acids (leucine, isoleucine and valine) with alpha-ketoglutarate. BCAT exists in two isoforms: one cytosolic (BCATc), mainly expressed in the nervous system, and the other mitochondrial (BCATm), present in a greater number of tissues. We previously showed that BCATc mRNA and protein expression in the dorsal lateral geniculate nucleus of the thalamus is up-regulated by exogenous administration of brain-derived neurotrophic factor (BDNF) following lesion of the visual cortex in newborn rats.

View Article and Find Full Text PDF

Purpose: The retina is a neural tissue especially differentiated for vision and, thus, the inner blood-retinal barrier (inner BRB) specific molecules may play an essential role in maintaining neural functions in the retina. The purpose of the present study was to identify selectively expressed genes at the inner blood-retinal barrier compared with the blood-brain barrier (BBB).

Methods: A comparison of expressed genes between conditionally immortalized rat retinal (TR-iBRB) cell lines and brain capillary endothelial (TR-BBB) cell lines was performed using mRNA differential display analysis and quantitative real time PCR analysis.

View Article and Find Full Text PDF

Visual cortex ablation in newborn rats determines the almost complete degeneration of neurons in the dorsal lateral geniculate nucleus (dLGN), as a consequence of the axotomy of the geniculo-cortical fibres. Death of dLGN neurons is massive and rapid, and occurs by apoptosis. We recently showed that exogenous administration of the neurotrophin brain-derived neurotrophic factor (BDNF) in the eye prevents the degeneration of dLGN neurons occurring after visual cortex lesion in newborn rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!