[In situ resonance Raman spectra of organic pigments in freshwater cultured pearls].

Guang Pu Xue Yu Guang Pu Fen Xi

College of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.

Published: January 2006

In situ resonance Raman spectra of Chinese freshwater pearls were collected and analysed systematically with three different excitation wavelengths at lambda = 514, 633 and 785 nm. At the same time, the Raman spectra of eggshells of Pomacea canaliculata were also collected under the same experimental conditions in order to compare with pearls' Raman spectra. The conclusions were as follows: (1) Frequency dispersions of Raman spectra of organic pigments were obviously observed in Raman spectra of pearls. In contrast, Raman spectra of organic pigments in eggshells of Pomacea canaliculata showed no frequency dispersion phenomena; (2) It was considered that the organic pigments in pearls were polyacetylenic materials but not carotenoids which was proposed by previous researchers, and the organic pigments in eggshells of Pomacea canaliculata were carotenoids; (3) The conjugated (>=C number of polyacetylenic material in pearls was calculated to be about 10 and 16, and the conjugated C[double bond]C number of carotenoid in eggshells of Pomacea canaliculata was about 13 based on the Raman shifts caused by conjugated C[double bond]C double bonds.

Download full-text PDF

Source

Publication Analysis

Top Keywords

raman spectra
28
organic pigments
20
eggshells pomacea
16
pomacea canaliculata
16
spectra organic
12
situ resonance
8
raman
8
resonance raman
8
pigments eggshells
8
conjugated c[double
8

Similar Publications

Raman Signature of Stripe Domains in Monolayer WMoS Alloys.

ACS Appl Mater Interfaces

January 2025

Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.

We study the Raman signature of stripe domains in monolayer WMoS alloys, characterized using experimental techniques and density functional theory (DFT) calculations. These stripe domains were found in star-shaped monolayer WS exhibiting a high concentration of molybdenum (Mo) atoms in its central region, and unique Raman peaks that were not previously reported. We attribute these peaks to the splitting of the original doubly degenerate E modes, arising from the lower symmetry of the W-Mo stripe domains.

View Article and Find Full Text PDF

Study on Microscopic Properties of Molten NaF-AlF-CaF/LiF/KF Using First-Principles Molecular Dynamics.

J Phys Chem B

January 2025

Key Laboratory for Ecological Metallurgy of Multimetallic Mineral (Ministry of Education), School of Metallurgy, Northeastern University, Shenyang, Liaoning 110819, China.

This study employs first-principles molecular dynamics (FPMD) simulations combined with the Voronoi tessellation method to explore the microstructure, transport properties, electronic properties, and Raman spectra of the NaF-AlF-CaF/LiF/KF systems with varying cryolite ratios, additive types, and concentrations. The results indicate that Na, Ca, Li, and K exist in a free state in the molten salts, while Al forms complex ion groups in the form of [AlF] with F, and free F also exists in the molten salts. In the NaF-AlF-CaF system, the average Al-F distance is slightly shorter than that in the other two systems, while the Al-F coordination number is higher in NaF-AlF-LiF.

View Article and Find Full Text PDF

The electrochemical conversion of CO into high value-added carbon materials by molten salt electrolysis offers a promising solution for reducing carbon dioxide emissions. This study focuses on investigating the influence of molten salt composition on the structure of CO direct electroreduction carbon products in chloride molten salt systems. Using CaO as a CO absorber, the adsorption principle of CO in LiCl-CaCl, LiCl-CaCl-NaCl and LiCl-CaCl-KCl molten salts was discussed, and the reasons for the different morphologies and structures of carbon products were analyzed, and it was found that the electrolytic efficiency of the whole process exceeded 85%.

View Article and Find Full Text PDF

Raman signatures of inversion symmetry breaking structural transition in quasi-1D compound, (TaSe4)3I.

J Phys Condens Matter

January 2025

School of Physical Sciences, Indian Association for the Cultivation of Science, 2A & B Raja S C Mullick Road, Kolkata 700032, INDIA, Kolkata, 700032, INDIA.

The breaking of inversion symmetry combined with spin-orbit coupling, can give rise to intrigu- ing quantum phases and collective excitations. Here, we report systematic temperature dependent Raman scattering and theoretical calculations of phonon modes across the inversion symmetry- breaking structural transitions in a quasi-one-dimensional compound (TaSe4)3I. Our investigation revealed the emergence of three additional Raman-active modes in Raman spectra of the low- temperature (LT) non-centrosymmetric (NC) structure of the material.

View Article and Find Full Text PDF

Spectroscopic study of energy transfer in collisions between vibrational excited H2 and CO2.

J Chem Phys

December 2024

Xinjiang Key Laboratory of Solid State Physics and Devices, Xinjiang University, Urumqi 830017, China.

The collisional energy transfer between vibrational excited H2(1, 7) and CO2 was investigated by exciting H2 to a vibrational excited state of v = 1, J = 7 by the stimulated Raman scattering technique. The coherent anti-Stokes Raman spectroscopy (CARS) technique determined that H2 was excited to the H2(1, 7) state. Varying the cuvette temperature, the number of H2(1, 7) particles was found to increase with the increase in H2 molar ratio α by scanning the intensity of the CARS spectrum, with peaks at different α at a temperature of 363 ± 15 K, but the peak temperature was not sensitive to α.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!