The present paper proposes to employ the cultured tumor cells of the breast and chick fibroblasts after long-term cultivation (for above 24 days) to determine their individual drug sensitivity and, as a criterion of cell damage, to use the percent of destruction of the cell layer formed in the wells 24 hours after drug insertion. It also presents the comparative results of tests of 2 cellular models that have been used to determine the in vitro sensitivity of the cells of breast cancer and chick fibroblasts to melfalan and its complex compound with copper acetylacetonate - MOK*M. At the same time, the cytotoxic activity of MOK*M and melfalan against tumor cells has been not shown to differ greatly (16.02+/-1.85 and 15.71+/-0.65% cell layer destruction, respectively), but the same activity of MOK*M against the model of intact cells (chick fibroblasts) was much less (15.23+/-1.97%) than that of melfalan (95.39+/-1.11%). The test system proposed by the authors is of certain informative value and it may be used for the determination of the individual sensitivity of tumor cells to antitumor drugs.

Download full-text PDF

Source

Publication Analysis

Top Keywords

tumor cells
12
chick fibroblasts
12
determination individual
8
individual sensitivity
8
cells breast
8
cell layer
8
activity mok*m
8
cells
5
[procedure determination
4
sensitivity
4

Similar Publications

Background: Peripheral nerve sheath tumors (PNSTs) encompass entities with different cellular differentiation and degrees of malignancy. Spatial heterogeneity complicates diagnosis and grading of PNSTs in some cases. In malignant PNST (MPNST) for example, single cell sequencing data has shown dissimilar differentiation states of tumor cells.

View Article and Find Full Text PDF

Background: B7-H3 or CD276 is notably overexpressed in various malignant tumor cells in humans, with extremely high expression rates. The development of a radiotracer that targets B7-H3 may provide a universal tumor-specific imaging agent and allow the noninvasive assessment of the whole-body distribution of B7-H3-expressing lesions.

Methods: We enhanced and optimized the structure of an affibody (ABY) that targets B7-H3 to create the radiolabeled radiotracer [68Ga]Ga-B7H3-BCH, and then, we conducted both foundational experiments and clinical translational studies.

View Article and Find Full Text PDF

Angiogenesis is a complex physiological process. In recent years, the immune regulation of angiogenesis has received increasing attention, and innate immune cells, which are centred on macrophages, are thought to play important roles in vascular neogenesis and development. Various innate immune cells can act on the vasculature through a variety of mechanisms, with commonalities as well as differences and synergistic effects, which are crucial for the progression of vascular lesions.

View Article and Find Full Text PDF

Complement C3 of tumor-derived extracellular vesicles promotes metastasis of RCC via recruitment of immunosuppressive myeloid cells.

Proc Natl Acad Sci U S A

January 2025

Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing 210096, China.

Heterogeneous roles of complement C3 have been implicated in tumor metastasis and are highly context dependent. However, the underlying mechanisms linking C3 to tumor metastasis remain elusive in renal cell carcinoma (RCC). Here, we demonstrate that C3 of RCC cell-derived extracellular vesicles (EVs) contributes to metastasis via polarizing tumor-associated macrophages (TAMs) into the immunosuppressive phenotype and recruiting polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs).

View Article and Find Full Text PDF

Ferroptosis is an iron-dependent form of programmed cell death (PCD) associated with lipid membrane peroxidation. It has gained attention in cancer research because some tumor cells that are resistant to other forms of PCD are sensitive to ferroptosis. Despite the significant amount of research on ferroptosis, the list of known inducers remains limited, creating opportunities to discover new compounds with clinical potential.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!