Matrix metalloproteinases (MMPs) are a family of extracellular proteases that are responsible for the degradation of the extracellular matrix during tissue remodeling. We have used a mouse model of allergen-induced airway remodeling to determine whether MMP-9 plays a role in airway remodeling. MMP-9-deficient and wild-type (WT) mice were repetitively challenged intranasally with ovalbumin (OVA) antigen to develop features of airway remodeling including peribronchial fibrosis and increased thickness of the peribronchial smooth muscle layer. OVA-challenged MMP-9-deficient mice had less peribronchial fibrosis and total lung collagen compared with OVA-challenged WT mice. There was no reduction in mucus expression, smooth muscle thickness, or airway responsiveness in OVA-challenged MMP-9-deficient compared with OVA-challenged WT mice. OVA-challenged MMP-9-deficient mice had reduced levels of bronchoalveolar lavage (BAL) regulated on activation, normal T cell expressed, and secreted (RANTES), as well as reduced numbers of BAL and peribronchial eosinophils compared with OVA-challenged WT mice. There were no significant difference in levels of BAL eotaxin, thymus- and activation-regulated chemokine (TARC), or macrophage-derived chemokine (MDC) in OVA-challenged WT compared with MMP-9-deficient mice. Overall, this study demonstrates that MMP-9 may play a role in mediating selected aspects of allergen-induced airway remodeling (i.e., modest reduction in levels of peribronchial fibrosis) but does not play a significant role in mucus expression, smooth muscle thickness, or airway responsiveness.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajplung.00305.2005DOI Listing

Publication Analysis

Top Keywords

peribronchial fibrosis
16
mmp-9-deficient mice
16
airway remodeling
16
smooth muscle
12
ova-challenged mmp-9-deficient
12
compared ova-challenged
12
ova-challenged mice
12
mice
8
allergen-induced airway
8
mucus expression
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!