Enhanced proliferation of progenitor cells following long-term potentiation induction in the rat dentate gyrus.

Neurobiol Learn Mem

Neuroscience Laboratory, Institute for Medical Sciences, Ajou University School of Medicine, Suwon 443-721, Republic of Korea.

Published: November 2006

The dentate gyrus (DG) is among the few areas in the mammalian brain where production of new neurons continues in the adulthood. Although its functional significance is not completely understood, several lines of evidence suggest the role of DG neurogenesis in learning and memory. Considering that long-term potentiation (LTP) is a prime candidate for the process underlying hippocampal learning and memory, these results raise the possibility that LTP and neurogenesis are closely related. Here, we investigated whether or not LTP induction in the afferent pathway triggers enhanced proliferation of progenitor cells in the DG. LTP was induced by tetanic stimulation in perforant path-DG synapses in one hemisphere, and the number of newly generated progenitor (BrdU-labeled) cells in the DG was quantified. Compared with the control hemisphere (stimulated with low-frequency pulses), the LTP-induced hemisphere contained a significantly higher number of newly generated progenitor cells in the dorsal as well as ventral DG. When CPP, an NMDA receptor antagonist, was administered, tetanic stimulation neither induced LTP nor enhanced progenitor cell proliferation, indicating that NMDA receptor activation, rather than tetanic stimulation per se, is responsible for enhanced progenitor proliferation in the control animal. Our results show that tetanic stimulation of perforant path sufficient to induce LTP increases progenitor proliferation in adult DG in an NMDA receptor-dependent manner.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nlm.2006.05.005DOI Listing

Publication Analysis

Top Keywords

tetanic stimulation
16
progenitor cells
12
enhanced proliferation
8
proliferation progenitor
8
long-term potentiation
8
dentate gyrus
8
learning memory
8
stimulation perforant
8
number newly
8
newly generated
8

Similar Publications

To evaluate the efficacy of domestic and imported sugammadex for reversal of rocuronium-induced deep neuromuscular block (NMB) in adult patients. The clinical data of adult patients who scheduled for elective surgery with general anesthesia that required muscle relaxants in Peking University First Hospital from June 2023 to June 2024 were prospectively included. The patients were devided into domestic group and imported group according to random number table method.

View Article and Find Full Text PDF

25-Hydroxycholesterol modulates synaptic vesicle endocytosis at the mouse neuromuscular junction.

Pflugers Arch

January 2025

Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St, Kazan, 420111, RT, Russia.

Many synaptic vesicles undergo exocytosis in motor nerve terminals during neuromuscular communication. Endocytosis then recovers the synaptic vesicle pool and presynaptic membrane area. The kinetics of endocytosis may shape neuromuscular transmission, determining its long-term reliability.

View Article and Find Full Text PDF

Using Transcranial Magnetic Nerve Stimulation to Differentiate Motor and Sensory Fascicles in a Mixed Nerve: Experimental Rat Study.

J Reconstr Microsurg

January 2025

Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Taipei, Linkou, Chang Gung University, Taoyuan, Taiwan.

Background:  Accurately matching the correct fascicles in a ruptured mixed nerve is critical for functional recovery. This study investigates the use of transcranial magnetic stimulation (TMS) to differentiate motor and sensory fascicles in a mixed nerve.

Methods:  In all 40 rats, the median nerve in the left upper arm was evenly split into three segments.

View Article and Find Full Text PDF

Terminal Schwann cells (TSCs) are capable of regulating acetylcholine (ACh) release at the neuromuscular junction (NMJ). We have identified GABA as a gliotransmitter at mouse NMJs. When ACh activates α7 nicotinic ACh receptor (nAChRs) on TSCs, GABA is released and activates GABA receptors on the nerve terminal that subsequently reduce ACh release.

View Article and Find Full Text PDF

Competing effects of activation history on force and cytosolic Ca in intact single mice myofibers.

Pflugers Arch

December 2024

School of Exercise and Nutritional Sciences, College of Health and Human Services, San Diego State University, 5500 Campanile Dr., San Diego, CA, 92182, USA.

The purpose was to investigate the changes in cytosolic Ca and force output during post-tetanic potentiation (PTP) during pre-fatigue and during prolonged low-frequency force depression (PLFFD) following fatigue. Intact single myofibers from the flexor digitorum brevis of mice were electrically stimulated to record force (n = 8) and free cytosolic Ca concentration ([Ca]) with FURA-2 (n = 6) at 32 °C. Initially, force and [Ca] were measured during brief (350 ms) trains of stimuli at 30, 50, 70, and 200 Hz at ~ 2 s intervals (Force-frequency protocol, FFP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!