Spectrophotometric evaluation of stability constants of 1:1 weak complexes from continuous variation data.

Int J Pharm

Department of Analytical Chemistry, Faculty of Pharmacy, The University of Seville, 41012 Seville, Spain.

Published: September 2006

A bilogarithmic hyperbolic cosine method for the spectrophotometric evaluation of stability constants of 1:1 weak complexes from continuous variation data has been devised and applied to literature data. A weighting scheme, however, is necessary in order to take into account the transformation for linearization. The method may be considered a useful alternative to methods in which one variable is involved on both sides of the basic equation (i.e. Heller and Schwarzenbach, Likussar and Adsul and Ramanathan). Classical least squares lead in those instances to biased and approximate stability constants and limiting absorbance values. The advantages of the proposed method are: the method gives a clear indication of the existence of only one complex in solution, it is flexible enough to allow for weighting of measurements and the computation procedure yield the best value of logbeta11 and its limit of error. The agreement between the values obtained by applying the weighted hyperbolic cosine method and the non-linear regression (NLR) method is good, being in both cases the mean quadratic error at a minimum.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2006.05.028DOI Listing

Publication Analysis

Top Keywords

stability constants
12
spectrophotometric evaluation
8
evaluation stability
8
constants weak
8
weak complexes
8
complexes continuous
8
continuous variation
8
variation data
8
hyperbolic cosine
8
cosine method
8

Similar Publications

Coumarin Analogues as Promising Anti-Obesity Agents: In Silico Design, Synthesis, and In Vitro Pancreatic Lipase Inhibitory Activity.

Chem Biol Drug Des

January 2025

Laboratory of Natural Product Chemistry, Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS Pilani), Pilani, Rajasthan, India.

A set of coumarin-3-carboxamide analogues were designed, synthesized, and evaluated for their ability to impede pancreatic lipase (PL) activity. Out of all the analogues, 5dh and 5de demonstrated promising inhibitory activity against PL, as indicated by their respective IC values of 9.20 and 11.

View Article and Find Full Text PDF

The limited transport of oxygen at the solid-liquid interface and the poor charge separation efficiency of single catalyst significantly impedes the generation of reactive oxygen species (ROS), thereby weakening the application potential of photocatalytic technology in water pollution control. Herein, a hollow porous photocatalytic aerogel sphere (calcium alginate/cellulose nanofibers (CA/CNF)) loaded BiOBr/TiC, combining a favourable mass transfer structure with effective catalytic centers was firstly presented. The floatability and hollow pore structure facilitated rapid O transfer via a triphase interface, thereby promoting the generation of ROS.

View Article and Find Full Text PDF

Proteases are overexpressed at various stages of conditions such as cancers and thus can serve as biomarkers for disease diagnosis. Electrochemical techniques to detect the activity of extracellular proteases have gained attraction due to their multiplexing capability. Here we employ an electrochemical approach based on a 3 × 3 gold (Au) microelectrode array (MEA) functionalized with (2-aminoethyl)ferrocene (AEF) tagged specific peptide substrates to monitor cathepsin B (CB) protease activity.

View Article and Find Full Text PDF

How SNARE proteins generate force to fuse membranes.

Biophys J

January 2025

Department of Chemical Engineering, Columbia University, New York, NY 10027. Electronic address:

Membrane fusion is central to fundamental cellular processes such as exocytosis, when an intracellular machinery fuses membrane-enclosed vesicles to the plasma membrane for contents release. The core machinery components are the SNARE proteins. SNARE complexation pulls the membranes together, but the fusion mechanism remains unclear.

View Article and Find Full Text PDF

Ultrasound-assisted efficient targeting of doxorubicin to the tumor microenvironment by lyso-thermosensitive liposomes of varying phase transition temperatures.

Eur J Pharm Sci

January 2025

Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran. Electronic address:

Premature drug release is the primary hindrance to the effective function of the lyso-thermosensitive liposomes (LTSLs) of doxorubicin (Dox), known as ThermoDox® for the treatment of cancer. Herein, we have optimized LTSLs by using a combination of phospholipids (PLs) with high transition temperatures (Tm) to improve the therapeutic outcome in an assisted ultrasound approach. For this, several Dox LTSLs were prepared using the remote loading method at varying molar ratios (0 to 90%) of DPPC (Tm 41°C) and HSPC (Tm 54.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!