A20 is a negative regulator of NF-kappaB activation and thus a potential therapeutic tool for the treatment of diseases where apoptosis and/or inflammatory responses are part of the pathogenic process. Thus, A20 has been shown to improve the long-term outcome of organ transplantation, particularly, the transplantation of islets of Langerhans which may aid the cure of type I diabetes. We now report a new role for A20 in regulating neovascularisation. We used RNA interference to inhibit A20 expression in primary human umbilical vein endothelial cells (HUVECs) and investigated the effect on tubule formation in two in vitro angiogenesis assays, Matrigel and a co-culture assay. Tubule area and tubule length were both reduced following inhibition of A20 expression in HUVECs. These inhibitory effects were particularly evident in the co-culture assay, which incorporates the critical steps of the angiogenic process and ultimately results in the formation of an intricate network of anastomosing tubules that resemble the formed capillary bed: a partial down-regulation of A20 protein (50-60%) resulted in a 28% reduction in tubule area (P < 0.05) and a 26% reduction in tubule length (P < 0.05). A20 may offer a new target in the treatment of human conditions, including cancer, which are characterised by neovascularisation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.yexcr.2006.05.015 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!