Objective: Cell transplantation strategies to regenerate compromised myocardium take advance of in vitro generated cardiomyocytes. Common in those immature myocytes is spontaneous impulse formation and a restricted ability to establish proper electrical interaction. Spontaneous impulse formation and impaired cell-to-cell coupling have been shown to be arrhythmogenic. To investigate whether these features harbour a pro-arrhyhmogenic potential for cell transplantation, a co-culture of spontaneously active neonatal rat cardiomyocytes (NRC) and quiescent adult dog cardiomyocytes (ADC) was used.
Methods: ADCs and NRCs were isolated and cultured on laminin-coated substrates. Connexin43, N-cadherin and alpha-actinin expression was evaluated with immunohistochemistry. Intercellular coupling was measured in cell pairs using the dual voltage clamp technique and fluorescent dye injection.
Results: One day after isolation, NRCs were beating spontaneously, while ADCs remained quiescent in monoculture. ADC resting membrane potential was -80.3+/-0.2 mV (mean+/-SEM, N=24) and did not change significantly over time. NRCs had a maximal diastolic potential of -65.0+/-2.8 mV (N=4). After one day of co-culture, pseudopodia-like extensions developed at the former intercalated discs of ADCs, contacting the NRCs. Only ADCs that contacted three or more NRCs started to beat in synchrony. Expression of connexin43 and N-cadherin indicated presence of electrical and mechanical junctions at the interface between the two cell-types. Transfer of Lucifer Yellow demonstrated junctional permeability between ADCs and NRCs. Junctional conductance between ADC-ADC (31.9+/-5.1 nS, N=10) and NRC-NRC (35.0+/-9.6 nS, N=6) pairs was significantly higher compared to ADC-NRC pairs (9.7+/-2.9 nS, N=8). Gap-junctional blockade with halothane reversibly abolished NRC-triggered beating of ADCs. Computer simulations demonstrated that within a delicate 'window' of gap junctional conductance small clusters of spontaneously active cells are able to induce triggered activity in quiescent mature myocytes but also in a two-dimensional sheet of ventricular cells.
Conclusion: Spontaneously active immature cardiomyocytes are able to trigger mature cardiomyocytes depending on their level of electrical coupling and the amount of coupled immature myocytes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cardiores.2006.06.001 | DOI Listing |
Elife
January 2025
Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Cologne, Germany.
Orexin signaling in the ventral tegmental area and substantia nigra promotes locomotion and reward processing, but it is not clear whether dopaminergic neurons directly mediate these effects. We show that dopaminergic neurons in these areas mainly express orexin receptor subtype 1 (Ox1R). In contrast, only a minor population in the medial ventral tegmental area express orexin receptor subtype 2 (Ox2R).
View Article and Find Full Text PDFCureus
December 2024
Department of Internal Medicine IV, Hospital Professor Doutor Fernando Fonseca, Amadora, PRT.
Vitamin K is essential to produce functional vitamin K-dependent coagulation factors (prothrombin, factors VII, IX, and X). Vitamin K antagonists inhibit the normal activation of these factors, leading to bleeding manifestations of variable severity. Long-acting vitamin K antagonists or superwarfarins were developed as rodenticides and have a significantly longer half-life and greater potency when compared to warfarin.
View Article and Find Full Text PDFFront Aging Neurosci
January 2025
Department of Biomedical Engineering and Science, Florida Institute of Technology, Melbourne, FL, United States.
Blink-related oscillations (BROs) are newly discovered neurophysiological brainwave responses associated with spontaneous blinking, and represent environmental monitoring and awareness processes as the brain evaluates new visual information appearing after eye re-opening. BRO responses have been demonstrated in healthy young adults across multiple task states and are modulated by both task and environmental factors, but little is known about this phenomenon in aging. To address this, we undertook the first large-scale evaluation of BRO responses in healthy aging using the Cambridge Centre for Aging and Neuroscience (Cam-CAN) repository, which contains magnetoencephalography (MEG) data from a large sample ( = 457) of healthy adults across a broad age range (18-88) during the performance of a simple target detection task.
View Article and Find Full Text PDFMol Psychiatry
January 2025
Department of Bioscience, University of Oslo, Oslo, Norway.
Perineuronal nets (PNNs) are a condensed form of extracellular matrix primarily found around parvalbumin-expressing (PV+) interneurons. The postnatal maturation of PV+ neurons is accompanied with the formation of PNNs and reduced plasticity. Alterations in PNN and PV+ neuron function have been described for mental disorders such as schizophrenia and autism.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Gastrointestinal Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, People's Republic of China.
Hepatorenal syndrome (HRS) is a key contributor to poor prognosis in liver cirrhosis. This study aims to leverage the database to build a predictive model for early identification of high-risk patients. From two sizable public databases, we retrieved pertinent information about the cirrhosis patients' therapies, comorbidities, laboratory results, and demographics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!