Cholesterol is the obligate precursor to adrenal steroids but is cytotoxic at high concentrations. Here, we show the role of the liver X receptors (LXRalpha and LXRbeta) in preventing accumulation of free cholesterol in mouse adrenal glands by controlling expression of genes involved in all aspects of cholesterol utilization, including the steroidogenic acute regulatory protein, StAR, a novel LXR target. Under chronic dietary stress, adrenal glands from Lxralphabeta-/- mice accumulated free cholesterol. In contrast, wild-type animals maintained cholesterol homeostasis through basal expression of genes involved in cholesterol efflux and storage (ABC transporter A1 [ABCA1], apoE, SREBP-1c) while preventing steroidogenic gene (StAR) expression. Upon treatment with an LXR agonist that mimics activation by oxysterols, expression of these target genes was increased. Basally, Lxralphabeta-/- mice exhibited a marked decrease in ABCA1 and a derepression of StAR expression, causing a net decrease in cholesterol efflux and an increase in steroidogenesis. These changes occurred under conditions that prevented the acute stress response and resulted in a phenotype more specific to the loss of LXRalpha, including hypercorticosteronemia, cholesterol ester accumulation, and adrenomegaly. These results imply LXRalpha provides a safety valve to limit free cholesterol levels as a basal protective mechanism in the adrenal gland, where cholesterol is under constant flux.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1483175PMC
http://dx.doi.org/10.1172/JCI28400DOI Listing

Publication Analysis

Top Keywords

free cholesterol
12
cholesterol
11
liver receptors
8
adrenal glands
8
expression genes
8
genes involved
8
lxralphabeta-/- mice
8
cholesterol efflux
8
star expression
8
adrenal
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!