The negative physical and affective aspects of opioid abstinence contribute to the prolongation of substance abuse. Withdrawal treatment is successful only in a subset of subjects, yet little is known about the neurobiological causes of these individual differences. Here, we compare the somatic and motivational components of opioid withdrawal in animals with high reactivity (HR) vs low reactivity (LR) to novelty, a phenotype associated with differential vulnerability to drug abuse. During withdrawal, HR relative to LR showed increased teeth chattering and eye twitching episodes, somatic signs associated with adrenergic modulation. Given the role of noradrenergic circuitry of the extended amygdala in opioid withdrawal, we examined adrenergic receptor gene expression in the bed nucleus of stria terminalis (BST) and central nucleus of the amygdala. Relative to LR, HR rats exhibit a selective increase in beta(1) adrenergic receptor expression in lateral and medial BST. To uncover the functional relevance of this difference, we microinjected betaxolol, a selective beta(1) receptor antagonist, into dorsal BST and assessed somatic and affective responses during withdrawal. Betaxolol microinjection dose-dependently decreased teeth chattering episodes in HR to levels observed in LR animals. Moreover, the antagonist blocked conditioned place aversion, a measure of negative affect associated with withdrawal, in HR but not in LR animals. Our results reveal for the first time that reactivity to novelty predicts somatic and affective aspects of opiate dependence, and that beta(1) receptors in BST are implicated in opiate withdrawal but only in novelty-seeking individuals.

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.npp.1301140DOI Listing

Publication Analysis

Top Keywords

beta1 adrenergic
8
bed nucleus
8
nucleus stria
8
stria terminalis
8
withdrawal
8
opiate withdrawal
8
affective aspects
8
abuse withdrawal
8
opioid withdrawal
8
withdrawal animals
8

Similar Publications

Frequency of autoantibodies and their associated clinical characteristics and outcomes in patients with dilated cardiomyopathy: A systematic review and meta-analysis.

Autoimmun Rev

January 2025

Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China,. Electronic address:

Background: Dilated cardiomyopathy (DCM) is a prevalent myocardial disorder characterized by impaired cardiac function affecting either the left ventricle or both ventricles. Accumulating evidence suggests that autoimmunity represents a key mechanism implicated in its pathogenesis, as several abundant autoantibodies have been identified in patients with the condition. However, the prevalence of these antibodies (Abs) in patients with DCM compared to that in both healthy controls (HCs) and those with ischemic cardiomyopathy (ICM), as well as their potential association with DCM, remains unclear.

View Article and Find Full Text PDF

Chronotropic effects of milrinone in a guinea pig ex vivo model: a pilot study to screen for new mechanisms of action.

J Cardiovasc Pharmacol

January 2025

Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.

Positive inotropic responses upon administration of milrinone, an inhibitor of the phosphodiesterase enzyme (PDE), involve a well-pronounced positive chronotropic effect. Here we tested whether milrinone evokes this chronotropic response solely by PDE inhibition or by a concerted action that involve additional pharmacological targets. Milrinone stimulated increases in heart rate were studied in right atrial preparations of guinea pig in the presence or absence of inhibitors of putative ancillary molecular pathways or ion channels: i.

View Article and Find Full Text PDF

Circadian rhythm of intraocular pressure.

J Physiol Sci

January 2025

Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-Ku, 819-0395, Fukuoka, Japan. Electronic address:

Intraocular pressure (IOP) plays a crucial role in glaucoma development, involving the dynamics of aqueous humor (AH). AH flows in from the ciliary body and exits through the trabecular meshwork (TM). IOP follows a circadian rhythm synchronized with the suprachiasmatic nucleus (SCN), the circadian pacemaker.

View Article and Find Full Text PDF

Introduction: Stress-evoked dysfunctions of the frontal cortex (FC) are correlated with changes in the functioning of the glutamatergic system, and evidence demonstrates that noradrenergic transmission is an important regulator of this process. In the current study, we adopted a restraint stress (RS) model in male Wistar rats to investigate whether the blockade of β1 adrenergic receptors (β1AR) with betaxolol (BET) in stressed animals influences the body's stress response and the expression of selected signaling proteins in the medial prefrontal cortex (mPFC).

Methods: The study was divided into two parts.

View Article and Find Full Text PDF

β-adrenergic receptor-induced E-S potentiation in the dorsal and ventral hippocampus.

Front Synaptic Neurosci

December 2024

Laboratory of Physiology, Department of Medicine, University of Patras, Patras, Greece.

β-adrenergic receptors (β-ARs) play a critical role in modulating learning, memory, emotionality, and long-term synaptic plasticity. Recent studies indicate that β-ARs are necessary for long-term potentiation (LTP) induction in the ventral hippocampus under moderate synaptic activation conditions that do not typically induce LTP. To explore potential dorsoventral differences in β-AR-mediated effects, we applied the β-AR agonist isoproterenol (10 μM, 30 min) to dorsal and ventral hippocampal slices, recording field excitatory postsynaptic potentials (fEPSPs) and population spikes (PSs) from the CA1 region.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!