Nowadays, synthetic biodegradable polymers, such as aliphatic polyesters, are largely used in tissue engineering. They provide several advantages compared to natural materials which use is limited by immunocompatibility, graft availability, etc. In this work, poly(L-lactic) acid (PLLA), poly(DL-lactic) acid (PDLA), poly-epsilon-caprolactone (PCL), poly(L-lactic)-co-caprolactone (molar ratio 70/30) (PLCL) were selected because of their common use in tissue engineering. The membranes were elaborated by solvent casting. Membrane morphology was investigated by atomic force microscopy. The membranes were seeded with human fibroblasts from cell line CRL 2703 in order to evaluate the biocompatibility by the Alamar blue test. The roughness of the membranes ranged from 4 nm for PDLA to 120 nm and they presented very smooth surface except for PCL which beside a macroscopic structure due to its hydrophobicity. Human fibroblasts proliferated over 28 days on the membranes proving the non-in vitro toxicity of the materials and of the processing method. A further step will be the fabrication of three-dimensional scaffold for tissue engineering and the treatment of the scaffolds to augment cell adhesion.
Download full-text PDF |
Source |
---|
ACS Appl Mater Interfaces
January 2025
Center of Translational Oral Research (TOR), Department of Clinical Dentistry, University of Bergen, Bergen 5009, Norway.
Wood-based nanocellulose is emerging as a promising nanomaterial in the field of tissue engineering due to its unique properties and versatile applications. Previously, we used TEMPO-mediated oxidation (TO) and carboxymethylation (CM) as chemical pretreatments prior to mechanical fibrillation of wood-based cellulose nanofibrils (CNFs) to produce scaffolds with different surface chemistries. The aim of the current study was to evaluate the effects of these chemical pretreatments on serum protein adsorption on 2D and 3D configurations of TO-CNF and CM-CNF and then to investigate their effects on cell adhesion, spreading, inflammatory mediator production , and the development of foreign body reaction (FBR) .
View Article and Find Full Text PDFJ Cereb Blood Flow Metab
January 2025
Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Stem cell-based therapies have raised considerable interest to develop regenerative treatment for neurological disorders with high disability. In this review, we focus on recent preclinical and clinical evidence of stem cell therapy in the treatment of degenerative neurological diseases and discuss different cell types, delivery routes and biodistribution of stem cell therapy. In addition, recent advances of mechanistic insights of stem cell therapy, including functional replacement by exogenous cells, immunomodulation and paracrine effects of stem cell therapies are also demonstrated.
View Article and Find Full Text PDFRadiographics
February 2025
From the Department of Radiology (S.Q., R.C., J.C.C., M.M., B.D.A., R.A.) and the Division of Cardiology, Department of Medicine (V.A., J.E.W., R.L.W., D.C.L.), Northwestern University Feinberg School of Medicine, 737 N Michigan Ave, Ste 1600, Chicago, IL 60611; Prince Charles Hospital, Chermside, Queensland, Australia (V.A.); and the Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Chicago, Ill (M.M.).
Orthotopic heart transplant (OHT) is a well-established therapy for end-stage heart failure that leads to improved long-term survival rates, with careful allograft surveillance essential for optimizing clinical outcomes after OHT. Unfortunately, complications can arise after OHT that can compromise the success of the OHT. Cardiac MRI is continually evolving, with a range of advanced techniques that can be applied to evaluate allograft structure and function.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands.
Brief Bioinform
November 2024
Department of Dermatology, Daping Hospital, Army Medical University, No. 10, Changjiang Branch Road, Yuzhong District, Chongqing 400042, China.
Psoriasis affects a significant proportion of the worldwide population and causes an extremely heavy psychological and physical burden. The existing therapeutic schemes have many deficiencies such as limited efficacies and various side effects. Therefore, novel ways of treating psoriasis are urgently needed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!