Endocrine cells of the anterior pituitary are controlled by the central nervous system through hormonal interactions and are not believed to receive direct synaptic connections from the brain. Studies suggest that some pituitary cells may be modulated by the neurotransmitter glutamate. We investigated prolactin (PRL)-releasing cells of the anterior pituitary of a euryhaline fish, the tilapia (Oreochromis mossambicus), for the presence of possible glutamate receptors (GluRs). Fura-2 imaging addressed the ability of glutamate to increase intracellular calcium. We observed a dose-dependent increase in intracellular calcium with transient perfusion (1-2 min) of glutamate (10 nM to 1 mM) in two-thirds of imaged cells. This increase was attenuated by the ionotropic GluR antagonist kynurenic acid (0.5-1.0 mM). The increase was also blocked or attenuated by antagonists of L-type voltage-gated calcium channels. The GluR agonist alpha-amino-3-hydroxy-5-methylisoxazole propionic acid (AMPA; 100 microM) produced intracellular calcium increases that were reversibly blocked by the selective AMPA antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). In contrast, the selective agonist N-methyl-D-aspartate (NMDA; 100 microM to 1 mM in magnesium-free solution with 10 microM glycine) had no effect on intracellular calcium. Radioimmunoassays demonstrated that glutamate stimulated PRL release. CNQX but not the NMDA receptor antagonist 2-amino-5-phosphonovaleric acid blocked this release. Antibodies for mammalian AMPA- and NMDA-type GluR produced a similar punctate immunoreactivity in the periphery of PRL cells. However, the NMDA antibody recognized a protein of a different molecular mass in PRL cells compared with brain cells. These results clearly indicate the presence of GluRs on tilapia PRL cells that can stimulate PRL release.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpendo.00207.2005 | DOI Listing |
Reprod Biol Endocrinol
January 2025
Department of Molecular and Developmental Medicine, Siena University, Siena, 53100, Italy.
Background: Endocrine-disrupting chemicals (EDCs) interfere with the endocrine system and negatively impact reproductive health. Biochanin A (BCA), an isoflavone with anti-inflammatory and estrogen-like properties, has been identified as one such EDC. This study investigates the effects of BCA on transcription, metabolism, and hormone regulation in primary human granulosa cells (GCs), with a specific focus on the activation of bitter taste receptors (TAS2Rs).
View Article and Find Full Text PDFCell Mol Life Sci
January 2025
Department of Infection Biology, Wonkwang University School of Medicine, Iksan, 54538, Republic of Korea.
Collagen, a major component of the extracellular matrix, is crucial for the structural integrity of the Caenorhabditis elegans cuticle. While several proteins involved in collagen biosynthesis have been identified, the complete regulatory network remains unclear. This study investigates the role of CALU-1, an ER-resident calcium-binding protein, in cuticle collagen formation and maintenance.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102446, China. Electronic address:
Age-related cataract (ARC) remains the leading cause of blindness worldwide. Sagittaria sagittifolia polysaccharide (SSP) extract, a key component of Sagittaria sagittifolia L., exhibits anti-oxidant and anti-apoptotic effects with potential applications in ARC.
View Article and Find Full Text PDFJ Biol Chem
January 2025
Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045; Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22903. Electronic address:
The mitochondrial Ca uniporter is the Ca channel responsible for mitochondrial Ca uptake. It plays crucial physiological roles in regulating oxidative phosphorylation, intracellular Ca signaling, and cell death. The uniporter contains the pore-forming MCU subunit, the auxiliary EMRE protein, and the regulatory MICU1 subunit, which blocks the MCU pore under resting cellular Ca concentrations.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Neurology, Jinshan Hospital, Fudan University, 201508 Shanghai, China.
Background: Neuronal cholesterol deficiency may contribute to the synaptopathy observed in Alzheimer's disease (AD). However, the underlying mechanisms remain poorly understood. Intact synaptic vesicle (SV) mobility is crucial for normal synaptic function, whereas disrupted SV mobility can trigger the synaptopathy associated with AD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!