Disulfide bond catalysis is an essential component of protein biogenesis in the secretory pathway, from yeast through to man. In the endoplasmic reticulum (ER), protein-disulfide isomerase (PDI) catalyzes the oxidation and isomerization of disulfide bonds and is re-oxidized by an endoplasmic reticulum oxidoreductase (ERO). The elucidation of ERO function was greatly aided by the genetic analysis of two ero mutants, whose impairment results from point mutations in the FAD binding domain of the Ero protein. The ero1-1 and ero1-2 yeast strains have conditional and dithiothreitol-sensitive phenotypes, but the effects of the mutations on the behavior of Ero proteins has not been reported. Here, we show that these Gly to Ser and His to Tyr mutations do not prevent the dimerization of Ero1beta or the non-covalent interaction of Ero1beta with PDI. However, the Gly to Ser mutation abolishes disulfide-dependent PDI-Ero1beta heterodimers. Both the Gly to Ser and His to Tyr mutations make Ero1beta susceptible to misoxidation and aggregation, particularly during a temperature or redox stress. We conclude that the Ero FAD binding domain is critical for conformational stability, allowing Ero proteins to withstand stress conditions that cause client proteins to misfold.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M602354200 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 10120, Thailand.
A single-component flavin-dependent halogenase, AetF, has emerged as an attractive biocatalyst for catalyzing halogenation. However, its flavin chemistry remains unexplored and cannot be predicted due to its uniqueness in sequence and structure compared to other flavin-dependent monooxygenases. Here, we investigated the flavin reactions of AetF using transient kinetics.
View Article and Find Full Text PDFNat Aging
January 2025
Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea.
The abnormal deposition of amyloid β (Aβ), produced by proteolytic cleavage events of amyloid precursor protein involving the protease γ-secretase and subsequent polymerization into amyloid plaques, plays a key role in the neuropathology of Alzheimer's disease (AD). Here we show that ErbB3 binding protein 1 (EBP1)/proliferation-associated 2G4 (PA2G4) interacts with presenilin, a catalytic subunit of γ-secretase, inhibiting Aβ production. Mice lacking forebrain Ebp1/Pa2g4 recapitulate the representative phenotypes of late-onset sporadic AD, displaying an age-dependent increase in Aβ deposition, amyloid plaques and cognitive dysfunction.
View Article and Find Full Text PDFJ Mol Model
January 2025
Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, 48128, USA.
Context: Riboflavin (RF), also known as B2 vitamin, is the precursor to flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), two co-enzymes involved in many electron transport processes. Interactions of the isoalloxazine ring, common to all three compounds, are of great interest due to their biological function in flavoproteins and relevance in the transport by the carrier protein leading to development of drug delivery strategies and non-invasive diagnostics techniques. Based on protein crystallographic data, a computational investigation of the interactions in the complexes between lumiflavin, a model compound, and aromatic amino acids, tyrosine and tryptophan, was pursued with the goal of characterizing noncovalent interactions.
View Article and Find Full Text PDFArch Biochem Biophys
January 2025
Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain; Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) Universidad de Zaragoza, GBsC (Unizar) Join Unit to CSIC, Zaragoza, Spain. Electronic address:
The peptidoglycan biosynthetic pathway involves a series of enzymatic reactions in which UDP-N-acetylglucosamine-enolpyruvate reductase (MurB) plays a crucial role in catalyzing the conversion of UDP-N-acetylglucosamine-enolpyruvate (UNAGEP) to UDP-N-acetylmuramic acid. This reaction relies on NADPH and FAD and, since MurB is not found in eukaryotes, it is an attractive target for the development of antimicrobials. MurB from Brucella ovis, the causative agent of brucellosis in sheep, is characterized here.
View Article and Find Full Text PDFNat Commun
January 2025
Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.
Glucose deprivation, a hallmark of the tumor microenvironment, compels tumor cells to seek alternative energy sources for survival and growth. Here, we show that glucose deprivation upregulates the expression of mitochondrial-cytochrome c oxidase II (MT-CO2), a subunit essential for the respiratory chain complex IV, in facilitating glutaminolysis and sustaining tumor cell survival. Mechanistically, glucose deprivation activates Ras signaling to enhance MT-CO2 transcription and inhibits IGF2BP3, an RNA-binding protein, to stabilize MT-CO2 mRNA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!