Recent development of a new class of patented alkylsaccharide transmucosal delivery enhancement agents, collectively designated as Intravail (Aegis Therapeutics) absorption enhancers, has created opportunities for new therapeutic options across a broad spectrum of human diseases. Intravail absorption enhancers provide unsurpassed intranasal bioavailabilities, comparable to those that are achieved by injection for protein, peptide and other macromolecular therapeutics. These novel, highly effective and non-irritating excipients circumvent the two primary limitations of intranasal drug delivery, namely mucosal irritation and poor bioavailability, and offer the promise of more convenient, more effective and safer therapeutics for patients and physicians alike. For pharmaceutical companies, Intravail provides a means to capitalise on two important industry dynamics: rapidly growing industry interest in commercialising peptide and protein drugs, and increasing interest in, and use of, the intranasal route for systemic drug delivery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1517/17425247.3.4.529 | DOI Listing |
Planta
January 2025
School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China.
Ginsenosides R2 and F2 are key active components of Panax japonicus var. major which exhibit a wide range of pharmacological effects. However, few UDP-glycosyltransferases (UGTs) involved in Rh2 and F2 biosynthesis have been identified.
View Article and Find Full Text PDFMikrochim Acta
January 2025
USST-UH International Joint Laboratory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai, 200093, China.
Ternary heterojunction BiS/MoS/BiMoO was designed as a signal probe to develop a dual signal amplification strategy empowered electrochemical biosensor for sensitive miRNA-21 detection by combining with catalytic hairpin assembly (CHA). The combination of the BiS/MoS/BiMoO heterojunction as a tracer indication probe and the CHA amplification strategy not only took fully use of the highly dense nanowire interwoven structure and superior active region of the probe, but also endowed the ability to improve the molecular hybridization efficiency by collision, which significantly avoided the cumbersome chain design and greatly simplified the step-by-step construction of the electrode surface. Hairpin H1 was first added dropwise to the gold nanoparticle-decorated electrode surface, and then opened by the introduced miRNA-21 to initiate the specific hybridization.
View Article and Find Full Text PDFEndocrinology
January 2025
Olson Center for Women's Health, Department of Obstetrics and Gynecology, College of Medicine, University of Nebraska Medical Center, Omaha, NE.
Leukemia is one of the most common cancers in prepubertal girls and adolescents, with advances improving survival rates. However, treatments like chemotherapy and radiation are highly gonadotoxic, often causing ovarian insufficiency, early menopause, infertility, and endocrine disorders. Fertility preservation for young female cancer patients, especially prepubertal girls without mature germ cells, relies heavily on ovarian tissue cryopreservation.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
Non-small cell lung cancer (NSCLC) is a widespread highly malignant type of lung cancer. Conventional chemotherapeutic drugs may be accompanied by both drug resistance and serious side effects in patients. Therefore, safer and more effective medications are urgently needed for the treatment of NSCLC.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Institute of Inorganic Chemistry, Leibniz University Hannover, Callinstraße 3-9, 30167 Hannover, Germany.
The increasing prevalence of antimicrobial resistance and adverse effects of systemic treatments calls for urgent reevaluation of current methods that rely on excessive, uncontrolled drug administration. In recent years triggerable systems have emerged as promising alternatives, enabling time-controlled and localized drug release, which are only activated if necessary. Light is an obvious candidate as an external trigger, since it allows for localized activation, is non-invasive and its wavelength and intensity can be tailored to fit the demands of the drug release system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!