The rotational and fine-structure spectrum of FeH, studied by far-infrared laser magnetic resonance.

J Chem Phys

The Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom.

Published: June 2006

Transitions between the spin-rotational levels of the FeH radical in the upsilon=0 level of the X (4)Delta ground state have been detected by the technique of laser magnetic resonance at far-infrared wavelengths. Both pure rotational and fine-structure transitions have been observed; lambda-type doubling is resolved on all the observed transitions. The energy levels of FeH are strongly affected by the breakdown of the Born-Oppenheimer approximation and cannot be modeled accurately by an effective Hamiltonian. The data are therefore fitted to an empirical formula to yield term values and g factors for the various spin-rotational levels involved. Many of the resonances show a doubling that arises from the proton hyperfine structure. These splittings are analyzed in a similar manner.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.2198843DOI Listing

Publication Analysis

Top Keywords

rotational fine-structure
8
laser magnetic
8
magnetic resonance
8
spin-rotational levels
8
levels feh
8
fine-structure spectrum
4
spectrum feh
4
feh studied
4
studied far-infrared
4
far-infrared laser
4

Similar Publications

There is a large gap between the performances indicated by rotating disk electrode (RDE) results in acidic media and the actual performances obtained in membrane-electrode assemblies (MEAs) composed of the same electrocatalysts. It is unclear whether the intrinsic kinetic reactivity of the available surface Pt sites of Pt-based cathode electrocatalysts is similar or different at RDE and in MEA. To address this, we used an operando element-selective time-resolved Pt L-edge quick X-ray absorption fine structure (QXAFS) technique to determine transient response profiles and rate constants, , , and , corresponding to changes in the oxidation states [white line (WL) intensity] and local structures (coordination numbers of Pt-O and Pt-Pt bonds) at Pt sites for nine representative Pt-based cathode electrocatalysts under transient voltage operations, aiming to understand the oxygen reduction reaction (ORR) performance gap between RDE and MEA.

View Article and Find Full Text PDF

The rotational spectrum of 2'-hydroxyacetophenone has been recorded and assigned for the first time using a Stark-modulated free-jet absorption millimeter-wave (FJ-AMMW) spectrometer in the 59.6-74.5 GHz frequency range.

View Article and Find Full Text PDF

X-ray spectromicroscopy is extensively utilized for nondestructive mapping of chemical states in materials. However, understanding and analyzing the geometric and topological aspects of such data pose challenges due to their representation in 4D space, encompassing (x, y, z) coordinates along with the energy (E) axis and often extending to 5D space with the inclusion of time (t) or reaction degree. In this study, we addressed this challenge by developing a new approach and introducing a device named `4D-XASView', specifically designed for visualizing X-ray absorption fine structures (XAFS) data in 4D (comprising 3D space and energy), through a multi-projection system, within the virtual reality (VR) environment.

View Article and Find Full Text PDF

Rubik's cube PBA frameworks for optimizing the electrochemical performance in alkali metal-ion batteries.

J Colloid Interface Sci

November 2024

School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002 Jiangsu, PR China. Electronic address:

PBA frameworks have stood out among metal-organic frameworks because of their easy preparation, excellent stability, porous structures, and rich redox properties. Unfortunately, their non-ideal conductivity and significant volume expansion during cycling prevent more widespread application in alkali-metal-ion (Li, Na, and K) batteries. By changing the type and molar ratio of metal ions, Rubik's PBA frameworks with infinite structural variations were obtained in this study, just like the Rubik's cube undergoes infinite changes during the rotation.

View Article and Find Full Text PDF

Fine-Structure Qubit Encoded in Metastable Strontium Trapped in an Optical Lattice.

Phys Rev Lett

April 2024

Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany.

We demonstrate coherent control of the fine-structure qubit in neutral strontium atoms. This qubit is encoded in the metastable ^{3}P_{2} and ^{3}P_{0} states, coupled by a Raman transition. Using a magnetic quadrupole transition, we demonstrate coherent state initialization of this THz qubit.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!