In this work Gaussian-type Geminals (GTGs) are applied in local second-order Moller-Plesset perturbation theory to improve the basis set convergence. Our implementation is based on the weak orthogonality functional of Szalewicz et al., [Chem. Phys. Lett. 91, 169 (1982); J. Chem. Phys. 78, 1420 (1983)] and a newly developed program for calculating the necessary many-electron integrals. The local approximations together with GTGs in the treatment of the correlation energy are introduced and tested. First results for correlation energies of H(2)O, CH(4), CO, C(2)H(2), C(2)H(4), H(2)CO, and N(2)H(4) as well as some reaction and activation energies are presented. More than 97% of the valence-shell correlation energy is recovered using aug-cc-pVDZ basis sets and six GTGs per electron pair. The results are compared with conventional calculations using correlation-consistent basis sets as well as with MP2-R12 results.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.2202102 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!