Mg-Al spinel (MgAl2O4) nanorods and nanoplatelets transformed from Mg-Al layered double hydroxide (Mg-Al-LDHs) were synthesized via a combined hydrothermal method and calcination route using Al(NO3).9H2O and Mg(NO3)2.6H2O as raw materials. The nanorods and nanoplatelets were characterized by means of physical techniques, including powder X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microcopy (HRTEM), selected-area electron diffraction (SAED), Fourier transform infrared spectra (FT-IR), thermogravimetric (TG), and nitrogen adsorption-desorption isotherms. XRD patterns reveal that the Mg-Al-LDHs nanostructures were obtained under a hydrothermal reaction temperature of 200 degrees C and Mg-Al spinel nanostructures were fabricated via calcination of the Mg-Al-LDHs nanostructures at 750 degrees C. It can be seen from TEM that the sizes of the Mg-Al-LDHs nanoplatelets were about 20-40 nm and the diameters of the MgAl2O4 nanorods were ca. 6 nm. The HRTEM images indicate that the crystal lattice spaces of the MgAl2O4 nanorods and nanoplatelets are 0.282 and 0.287 nm, respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp060916d | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!