Fragmentation pathways of [Mg(NH3)n]2+ complexes: electron capture versus charge separation.

J Phys Chem A

Department of Physical Chemistry, School of Chemistry, The University of Nottingham, University Park, Nottingham NG7 2RD, UK.

Published: July 2006

AI Article Synopsis

  • New experimental findings reveal the fragmentation pathways of gas-phase [Mg(NH(3))(n)](2+) complexes, focusing on the most stable form, [Mg(NH(3))(4)](2+).
  • This species represents a critical point between unstable complexes and those designating sufficient solvation, impacting solvent structure relating to hydrogen bonding.
  • The study indicates that electron capture dissociation (ECD) plays a more significant role in breaking down these cation complexes than previously thought, challenging prior conclusions about collisional activation primarily leading to charge separation.

Article Abstract

New experimental results are presented from a detailed study of gas-phase [Mg(NH(3))(n)](2+) complexes and their fragmentation pathways. The reactions examined range from those observed as metastable (unimolecular) decompositions through to collision-induced processes, which have been accessed using a variety of collision gases. Measurements of ion intensity distributions coupled with unimolecular decay studies show that [Mg(NH(3))(4)](2+) not only is the most intense species detected but also sits at a critical boundary between complexes that are unstable with respect to charge separation and those that are sufficiently solvated to be deemed stable on the time scale of the experiment. Metastable fragmentation patterns have been used to provide information on the evolution of solvent structure around the central dication. In addition to highlighting the particular significance of [Mg(NH(3))(4)](2+), these measurements show some evidence to suggest the buildup of structures via a hydrogen-bonded network to give conformers of the form (4+1) and (4+2), respectively. Collision-induced dissociation studies show the ions to exhibit several fragmentation pathways, including the loss of NH(3) and NH(3) + H, which are promoted primarily through electron capture dissociation (ECD). This picture contrasts with the conclusion from a number of earlier studies that collisional activation mainly promotes charge separation. From the results presented it is suggested that electron capture may play a more dominant role in the charge reduction of multiply charged metal-ligand species than had previously been appreciated.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp0573442DOI Listing

Publication Analysis

Top Keywords

fragmentation pathways
12
electron capture
12
charge separation
12
[mgnh3n]2+ complexes
8
fragmentation
4
pathways [mgnh3n]2+
4
complexes electron
4
capture versus
4
charge
4
versus charge
4

Similar Publications

Noncanonical UPR factor CREB3L2 drives immune evasion of triple-negative breast cancer through Hedgehog pathway modulation in T cells.

Sci Adv

January 2025

Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.

The unfolded protein response (UPR) pathway is crucial for tumorigenesis, mainly by regulating cancer cell stress responses and survival. However, whether UPR factors facilitate cell-cell communication between cancer cells and immune cells to drive cancer progression remains unclear. We found that adenosine 3',5'-monophosphate response element-binding protein 3-like protein 2 (CREB3L2), a noncanonical UPR factor, is overexpressed and activated in triple-negative breast cancer, where its cleavage releases a C-terminal fragment that activates the Hedgehog pathway in neighboring CD8+ T cells.

View Article and Find Full Text PDF

Salt stress causes ion toxicity in plant cells and limits plant growth and crop productivity. Sodium ions (Na+) are transported out of the cell and sequestered in the vacuole for detoxification under salt stress. The salt excretion system is controlled by the SALT OVERLY SENSITIVE (SOS) pathway, which consists of the calcium sensors SOS3 and SOS3-LIKE CALCIUM BINDING PROTEIN 8, the protein kinase SOS2, and the plasma membrane Na+/H+ antiporter SOS1.

View Article and Find Full Text PDF

Background: Neuroinflammation is one of the essential pathogeneses of cognitive damage suffering from sepsis-associated encephalopathy (SAE). Lots of evidences showed the microglia presented mitochondrial fragmentation during SAE. This study investigated the protective effects and novel mechanisms of inhibiting microglia mitochondrial fragmentation via mitochondrial division inhibitor 1 (Mdivi-1) on cognitive damage in SAE.

View Article and Find Full Text PDF

Rationale: Astragali radix-Salvia miltiorrhiza (AR-SM) is an herb pair with good therapeutic effects and is widely used. In this study, the in vitro and in vivo components of AR-SM were quickly classified and identified based on UHPLC-orbital mass spectrometry. This provided a basis for clarifying the bioactive substances after compatibility of AR and SM.

View Article and Find Full Text PDF

Construction and biological function of gene knockout strain.

Zhong Nan Da Xue Xue Bao Yi Xue Ban

August 2024

Department of Parasitology, School of Basic Medical Sciences, Central South University, Changsha 410013.

Objectives: Toxoplasmosis is a zoonotic parasitic disease caused by (), which can lead to complications such as encephalitis and ocular toxoplasmosis. The disease becomes more severe when the host's immune system is compromised. Rhoptry proteins are major virulence factors that enable to invade host cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!