Amiloride (1), the prototypical epithelial sodium channel (ENaC) blocker, has been administered with limited success as aerosol therapy for improving pulmonary function in patients with the genetic disorder cystic fibrosis. This study was conducted to synthesize and identify more potent, less reversible ENaC blockers, targeted for aerosol therapy and possessing minimal systemic renal activity. A series of novel 2-substituted acylguanidine analogues of amiloride were synthesized and evaluated for potency and reversibility on bronchial ENaC. All compounds tested were more potent and less reversible at blocking sodium-dependent short-circuit current than amiloride. Compounds 30-34 showed the greatest potency on ENaC with IC(50) values below 10 nM. A regioselective difference in potency was found (compounds 30, 39, and 40), whereas no stereospecific (compounds 33, 34) difference in potency on ENaC was displayed. Lead compound 32 was 102-fold more potent and 5-fold less reversible than amiloride and displayed the lowest IC(50) value ever reported for an ENaC blocker.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jm051134w | DOI Listing |
J Am Chem Soc
January 2025
Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, Shenzhen 518107, China.
The synthesis of chiral tetrahydroquinolines (THQs) has garnered significant interest from medicinal chemists due to their frequent presence as pharmacophores in bioactive compounds. While existing synthetic methods have primarily focused on THQs with single or multiple endocyclic chiral centers, the selective construction of THQs with both and cyclic chiral centers remains a significant challenge that requires further development. This study introduces a dynamic kinetic resolution (DKR)-based transfer hydrogenation of racemic 2-substituted quinolines, which yields structurally novel chiral THQs with consecutive and cyclic chiral centers in excellent yields and stereoselectivities (59 examples, with generally >20:1 dr and >90% ee, up to three consecutive stereocenters).
View Article and Find Full Text PDFFuture Med Chem
January 2025
Chemistry Department, Faculty of Science, Arish University, Arish, Egypt.
Background: Using an analogue-based drug design approach, a number of novel 2-substituted-1,3-thiazolone derivatives (3-10) have been produced and given permission to proceed for their anti-inflammatory properties. In the present paper, the new thiazole derivatives were designed, synthesized, and tested for their alpha-glucosidase, alpha-amylase, and COX-inhibitory activities. Approving the anti-diabetic activity.
View Article and Find Full Text PDFJ Org Chem
January 2025
Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, People's Republic of China.
A novel copper-catalyzed formal diastereoselective [4 + 3] cycloaddition of 2-arylaziridines and 2-substituted cyclopentadiene was developed. This transformation provided an efficient protocol for the assembly of a highly strained bridged azabicyclo[3.2.
View Article and Find Full Text PDFOrg Lett
December 2024
Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia.
We present a Diversity Oriented Clicking approach to synthesize a library of novel clickable -substituted 2-aminothiazoles which serve as versatile hubs for SuFEx click chemistry diversification. Leveraging the spring-loaded reactivity of the 2-Substituted-Alkynyl-1-Sulfonyl Fluoride (SASF) connectors, the transformation is simple to perform, tolerant of a wide range of functionality, and regioselective for a single product. Finally, we propose a detailed stepwise reaction mechanism that is supported by experimental and computational analysis.
View Article and Find Full Text PDFJ Org Chem
December 2024
Department of Chemistry, Sidho-Kanho-Birsha University, Purulia 723104, W.B., India.
Distinctive, green, innovative, and well-organized photoinduced (metal- or photocatalyst-free) regioselective decarbonylative and decarboxylative C-O bond functionalization protocols to access aryl 2-aminobenzoates and 2-substituted benzoxazinone derivatives in excellent yields have been devised. These are achieved through the chemoselective scission of isatoic anhydride with ketones, diaryliodonium triflate, nitroalkene, phthalazinone, and phenol derivatives, which, in turn, served as the representative "electrophilic and nucleophilic" coupling partners. Control experiments and DFT calculations reveal that electrophilic radical-bearing coupling partners specifically follow the decarbonylation pathway, while nucleophilic radical-bearing conjugates facilitate the decarboxylation process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!