A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Infection paradox: high abundance but low impact of freshwater benthic viruses. | LitMetric

Infection paradox: high abundance but low impact of freshwater benthic viruses.

Appl Environ Microbiol

Department of Aquatic Ecology, Eawag (Swiss Federal Institute of Aquatic Science and Technology), and Institute of Integrative Biology (IBZ), ETH Zurich, 6047 Kastanienbaum, Switzerland.

Published: July 2006

The discovery of an abundant and diverse virus community in oceans and lakes has profoundly reshaped ideas about global carbon and nutrient fluxes, food web dynamics, and maintenance of microbial biodiversity. These roles are exerted through massive viral impact on the population dynamics of heterotrophic bacterioplankton and primary producers. We took advantage of a shallow wetland system with contrasting microhabitats in close proximity to demonstrate that in marked contrast to pelagic systems, viral infection, determined directly by transmission electron microscopy, and consequently mortality of prokaryotes were surprisingly low in benthic habitats in all seasons. This was true even though free viruses were abundant throughout the year and bacterial infection and mortality rates were high in surrounding water. The habitats in which we found this pattern include sediment, decomposing plant litter, and biofilms on aquatic vegetation. Overall, we detected viruses in only 4 of a total of approximately 15,000 bacterial cells inspected in these three habitats; for comparison, nearly 300 of approximately 5,000 cells suspended in the water column were infected. The strikingly low incidence of impact of phages in the benthos may have important implications, since a major portion of microbial biodiversity and global carbon and nutrient turnover are associated with surfaces. Therefore, if failure to infect benthic bacteria is a widespread phenomenon, then the global role of viruses in controlling microbial diversity, food web dynamics, and biogeochemical cycles would be greatly diminished compared to predictions based on data from planktonic environments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1489317PMC
http://dx.doi.org/10.1128/AEM.00319-06DOI Listing

Publication Analysis

Top Keywords

global carbon
8
carbon nutrient
8
food web
8
web dynamics
8
microbial biodiversity
8
infection paradox
4
paradox high
4
high abundance
4
abundance low
4
low impact
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!