According to previous studies, endothelin-1 (ET-1) is the most potent growth factor in the regulation of vascular smooth muscle cell (VSMC) proliferation in spontaneously hypertensive rats (SHR). To evaluate if the dominant effect of ET-1-induced VSMC proliferation is achieved by autocrine regulation, aortic smooth muscle cells from four-week-old SHR and WKY (Wistar-Kyoto) rats were cultured in 24-well dishes, and the effects of ET-1 on VSMC proliferation were determined by (a) 3H-thymidine incorporation assays with different ET-1 blocking treatments, including a specific anti-ET-1 antibody; BQ-123, an ETA receptor blocker; and BQ-788, an ETB receptor blocker; and (b) examining the ET-1 blockade on the effects of treatment with other growth factors, including thrombin and angiotension II (AT-II). These results demonstrated that the anti-ET-1 antibody, BQ-123, BQ-788, and BQ-123 plus BQ-788 all caused dose-dependent inhibition of proliferation. A 90% inhibitory effect was observed at the maximum doses used except for BQ-123. The ET-1 receptor blockers inhibited thrombin-induced VSMC growth; however, they did not efficiently inhibit AT-II-induced VSMC growth. These results indicate that the autocrine effects of ET-1 play a predominant role in the proliferation of VSMCs from SHR and WKY rats. They also suggest that thrombin-induced VSMC growth is mediated by the autocrine effects of ET-1, and angiotensin II-induced VSMC growth is mediated by other signal pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10641960600798747DOI Listing

Publication Analysis

Top Keywords

vsmc growth
16
autocrine effects
12
smooth muscle
12
vsmc proliferation
12
effects et-1
12
vascular smooth
8
muscle cells
8
spontaneously hypertensive
8
shr wky
8
anti-et-1 antibody
8

Similar Publications

Objective: Hypertension significantly contributes to morbidity and mortality. Nuclear receptor subfamily 4 group a member 1 (Nur77) participates in regulating oxidative stress, but the mechanism in hypertension remains unclear. This study aimed to explore the function of Nur77 in oxidative stress induced by Angiotensin II (Ang II) in vascular smooth muscle cells (VSMCs) in hypertension.

View Article and Find Full Text PDF

The effective and translational strategy to regenerate knee meniscal fibrocartilage remained challenging. Herein, we first identified vascular smooth muscle cells (VSMCs) transdifferentiated into fibrochondrocytes and participated in spontaneous meniscal regeneration using smooth muscle cell lineage tracing transgenic mice meniscal defect model. Then, we identified low-intensity pulsed ultrasound (LIPUS) acoustic stimulus enhanced fibrochondrogenic transdifferentiation of VSMCs in vitro and in vivo.

View Article and Find Full Text PDF

Background: Abdominal aortic aneurysm (AAA) rupture is a significant cause of mortality in the elderly population. Despite experimental models identifying promising pharmacological therapies, there is still a lack of pharmacological interventions for AAA prior to surgery. This study aims to evaluate the regulatory role of the novel adenosine monophosphate-activated protein kinase (AMPK) agonist O304 in AAA formation and explore its underlying molecular mechanisms.

View Article and Find Full Text PDF

The Bone-Vascular Axis: A Key Player in Chronic Kidney Disease Associated Vascular Calcification.

Kidney Dis (Basel)

December 2024

Department of Nephrology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China.

Background: The bone-vascular axis plays a key role in the pathogenesis of vascular calcification (VC) in patients with chronic kidney disease (CKD). Understanding and managing the role of the bone-vascular axis in CKD-mineral and bone disorder (CKD-MBD) is critical for preventing and treating associated complications, including osteoporosis, arterial calcification, and cardiovascular diseases. This study aimed to comprehensively summarize the role of bone metabolism markers in uremic VC.

View Article and Find Full Text PDF

ATP citrate lyase (ACLY), a crucial enzyme in de novo lipid synthesis and histone acetylation, plays a key role in regulating vascular smooth muscle cell (VSMC) proliferation and survival. We found that human coronary and pulmonary artery tissues had up-regulated ACLY expression during vascular remodeling in coronary artery disease and pulmonary arterial hypertension. Pharmacological and genetic inhibition of ACLY in human primary cultured VSMCs isolated from the coronary arteries of patients with coronary artery diseases and from the distal pulmonary arteries of patients with pulmonary arterial hypertension resulted in reduced cellular proliferation and migration and increased susceptibility to apoptosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!