Conflicting results have been reported concerning the toxicity of cerebrospinal fluid from patients with amyotrophic lateral sclerosis (ALS-CSF) when added to neuronal cultures. The possible toxic factor(s) and the exact mode of action (e.g. requirement of glial cells) have not been identified so far. Glutamate is a potential candidate for this toxic effect, since antagonists of ionotropic glutamate receptors have been shown to attenuate ALS-CSF toxicity. We studied the effects of ALS-CSF on mixed and motoneuron-enriched chick embryonic spinal cord cultures. We found a toxic action of ALS-CSF in both culture types which could not be attenuated by 5 kDa-filtration or 15 min 90 degrees C heating. Nevertheless, the metabotropic glutamate receptor (mGluR) group I antagonist 1-aminoindan-1,5-dicarboxylic acid, but also the group I agonist (s)-3,5-dihydroxyphenylglycine (DHPG) exerted protective effects against ALS-CSF toxicity. In this experimental setting, DHPG may functionally act via a receptor blockade due to sustained activation. No protective effect was seen with the mGluR group III inhibitor (RS)-alpha-cyclopropyl-4-phosphonophenylglycine (CPPG). Addition of DHPG did not increase the protective action of the AMPA inhibitor 6-chloro-4-hydroxyquinoline-2-carboxylic acid (6-CKU). Addition of l-glutamate did not mimic these toxic ALS-CSF effects in motoneuron-enriched cultures. Our experiments demonstrate that ALS-CSF toxicity is mediated by a small heat-resistant molecule which may act directly on neurons. Since blockade of group I mGluRs exerts a protective effect, the possibility of targeting these mGluRs pharmacologically in motoneuron disease should be kept in mind.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroscience.2006.05.044 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!