Inhibitory interactions between GABA(A)[induced by gamma-aminobutyric acid (GABA)] and P2X [activated by adenosine 5'-triphosphate (ATP)] receptors of myenteric neurones from the guinea pig small intestine were characterized using whole-cell recordings. Currents induced by GABA (I(GABA)) or ATP (I(ATP)) were inhibited by picrotoxin or pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid, respectively. Currents induced by GABA + ATP (I(GABA+ATP)) were only as large as the current induced by the most effective transmitter, revealing current occlusion. This occlusion requires maximal activation of at least one of these receptors. Sequential applications of neurotransmitters, and kinetic and pharmacological properties of I(GABA+ATP) indicate that they are carried through both GABA(A) and P2X channels. ATP did not affect I(GABA) in neurones: (i) in which P2X channels were not present; (ii) after inhibiting P2X channels with Ca2+ (iii) in the presence of pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid, a P2X receptor antagonist; (iv) after P2X receptor desensitization or (v) at I(ATP) reversal potential. Similarly, GABA did not affect P2X-mediated currents in neurones: (i) in which GABA(A) channels were not present; (ii) in the presence of picrotoxin, a GABA(A) channel blocker; (iii) after GABA(A) receptor desensitization or (iv) at the I(GABA) reversal potential. Current occlusion occurred as fast as current activation and it was still present in the absence of Ca2+, at 11 degrees C, after adding to the pipette solution a cocktail of protein kinase inhibitors (staurosporine + genistein + K-252a), after substituting the GTP in the pipette with GDP-beta-S and after treating the cells with N-ethylmaleimide. Taken together, all of these results are consistent with a model of cross-inhibition between GABA(A) and P2X.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1460-9568.2006.04861.x | DOI Listing |
J Physiol Sci
January 2025
Department of Basic Veterinary Science, Laboratory of Physiology, Joint Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, 501-1193, Gifu, Japan; Department of Basic Veterinary Science, Laboratory of Physiology, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, 501-1193, Gifu, Japan; Division of Animal Medical Science, Center for One Medicine Innovative Translational Research (COMIT), Gifu University Institute for Advanced Study, 1-1 Yanagido, 501-1193, Gifu, Japan.
Purines such as ATP are regulatory transmitters in motility of the gastrointestinal tract. The aims of this study were to propose functional roles of purinergic regulation of esophageal motility. An isolated segment of the rat esophagus was placed in an organ bath, and mechanical responses were recorded using a force transducer.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA.
P2X receptors (P2XRs) are adenosine 5'-triphosphate (ATP)-gated ion channels comprising homomeric and heteromeric trimers of seven subtypes (P2X1-P2X7) that confer different rates of desensitization. The helical recoil model of P2XR desensitization proposes stability of the cytoplasmic cap sets the rate of desensitization, but timing of its formation is unclear for slow-desensitizing P2XRs. We report cryo-electron microscopy structures of full-length wild-type human P2X4 receptor in apo closed, antagonist-bound inhibited, and ATP-bound desensitized states.
View Article and Find Full Text PDFACS Pharmacol Transl Sci
January 2025
Pharmaceutical Institute, Pharmacology and Toxicology, University of Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany.
Lipopolysaccharide (LPS)-neutralizing peptides are emerging as new potential therapeutic modalities to treat sepsis and skin infections. Purinergic ligand-gated ion channels (P2X receptors) play a critical role in various biological processes, including inflammation. Recent drug development efforts have significantly focused on the modulation of P2X receptors.
View Article and Find Full Text PDFPharmaceuticals (Basel)
November 2024
Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo 1781421, Chile.
P2X receptor channels are widely expressed in the CNS, where they have multiple functions in health and disease. The rat P2X2a (rP2X2a) receptor channel is modulated by copper, an essential trace element that plays important roles in synaptic modulation and neurodegenerative disorders. Although essential extracellular amino acids that coordinate copper have been identified, the exact mechanism of copper-induced modulation has not been yet elucidated.
View Article and Find Full Text PDFBiomaterials
January 2025
Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 500 Quxi Road, Shanghai, 200011, China. Electronic address:
Addressing the concurrent repair of cartilage and subchondral bone presents a significant challenge yet is crucial for the effective treatment of severe joint injuries. This study introduces a novel biodegradable composite scaffold, integrating piezoelectric poly-l-lactic acid (pPLLA) with strontium-enriched silicate bioceramic (SrSiO). This innovative scaffold continually releases bioactive Sr and SiO ions while generating an electrical charge under low-intensity pulsed ultrasound (LIPUS) stimulation, a clinically recognized method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!