In the inner ear, the excitatory amino acid glutamate is a proposed neurotransmitter acting at the synapse between hair cells and afferent auditory neurons. Using cultures of 5-day-old rat auditory neurons, we show that the afferent auditory neuronal population can be divided, on the basis of its sensitivity to the neuronotoxic effect of glutamate and its analogs, in at least 3 subpopulations, one responding to N-methyl-D-aspartate (NMDA), one responding to kainate and a third minor one unresponsive to NMDA, kainic acid and glutamate. No toxic effect of quisqualate is observed. The use of specific antagonists (kynurenate and 2-amino-5-phosphonovalerate (DAP-5) demonstrates the specificity of the receptors to the excitatory amino acids on the afferent auditory neurons. Afferent auditory neurons from adult rats can also be cultured and in these preparations only the large neurons are sensitive to glutamate, kainate and NMDA while the small neurons are not responsive, suggesting that a glutamatergic neurotransmission occurs only at this synapse between the inner hair cells and the large radial afferent auditory neurons. We also show that, in vitro, the organ of Corti releases, in response to an increased potassium concentration and in the presence of calcium, a toxic activity for the afferent auditory neurons that is antagonized by kynurenate and DAP-5. Pathophysiological implications are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0006-8993(91)90862-p | DOI Listing |
Neuroimage
January 2025
Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada; Department of Physiology, McGill University, Montreal, Quebec, Canada. Electronic address:
In response to sensory deprivation, the brain adapts to efficiently navigate a modified perceptual environment through a process referred to as compensatory crossmodal plasticity, allowing the remaining senses to repurpose deprived regions and networks. A mechanism that has been proposed to contribute to this plasticity involves adaptations within subcortical nuclei that trigger cascading effects throughout the brain. The current study uses 7T MRI to investigate the effect of perinatal deafness on the volumes of subcortical structures in felines, focusing on key sensory nuclei within the brainstem and thalamus.
View Article and Find Full Text PDFNeurosci Res
January 2025
Department of Cell Physiology, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan. Electronic address:
Sensorineural hearing loss causes cell death in central auditory neurons, but molecular mechanisms of triggering this process are not fully understood. We report here that loss of afferent activity promotes cell death by facilitating proBDNF-p75NTR signals in cochlear nucleus of chicks around hatch. RNA-seq analyses revealed up-regulation of genes related to proBDNF-p75NTR-JNK signals as well as apoptosis at the nucleus within 24hours after unilateral cochlea deprivation.
View Article and Find Full Text PDFBrain Commun
January 2025
Centre for Cognitive Neuroscience, University of Salzburg, 5020 Salzburg, Austria.
Former studies have established that individuals with a cochlear implant (CI) for treating single-sided deafness experience improved speech processing after implantation. However, it is not clear how each ear contributes separately to improve speech perception over time at the behavioural and neural level. In this longitudinal EEG study with four different time points, we measured neural activity in response to various temporally and spectrally degraded spoken words presented monaurally to the CI and non-CI ears (5 left and 5 right ears) in 10 single-sided CI users and 10 age- and sex-matched individuals with normal hearing.
View Article and Find Full Text PDFNat Commun
January 2025
School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK.
The refinement of neural circuits towards mature function is driven during development by patterned spontaneous calcium-dependent electrical activity. In the auditory system, this sensory-independent activity arises in the pre-hearing cochlea and regulates the survival and refinement of the auditory pathway. However, the origin and interplay of calcium signals during cochlear development is unknown in vivo.
View Article and Find Full Text PDFElife
December 2024
Auditory Neuroscience and Synaptic Nanophysiology Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
Neural diversity can expand the encoding capacity of a circuitry. A striking example of diverse structure and function is presented by the afferent synapses between inner hair cells (IHCs) and spiral ganglion neurons (SGNs) in the cochlea. Presynaptic active zones at the pillar IHC side activate at lower IHC potentials than those of the modiolar side that have more presynaptic Ca channels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!