Control of transcription factor activity and osteoblast differentiation in mammalian cells using an evolved small-molecule-dependent intein.

J Am Chem Soc

Department of Chemistry and Chemical Biology, Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138, USA.

Published: July 2006

Inteins are naturally occurring protein elements that catalyze their own excision from within a larger protein together with the ligation of the flanking "extein" sequences. Previously we reported the directed evolution of an intein-based molecular switch in which intein splicing in yeast cells was made dependent on the cell-permeable small molecule 4-hydroxytamoxifen (4-HT). Here we show that these evolved inteins are effective means of rendering protein function and biological signaling pathway activation dependent on 4-HT in mammalian cells. We have characterized the generality, speed, and dose dependence of ligand-induced protein splicing in murine NIH3T3 cells and in human HEK293 cells. Evolved inteins were used to control in mammalian cells the function of Gli1 and a truncated form of Gli3, two transcriptional mediators of the Hedgehog signaling pathway. Finally, we show that a complex biological process such as osteoblast differentiation can be made dependent on 4-HT using the evolved intein system. Our findings suggest that evolved small-molecule-dependent inteins may serve as a general means of achieving gene-specific, dose-dependent, post-translational, and small-molecule-induced control over protein activity in mammalian systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2519127PMC
http://dx.doi.org/10.1021/ja062980eDOI Listing

Publication Analysis

Top Keywords

mammalian cells
12
osteoblast differentiation
8
cells evolved
8
evolved small-molecule-dependent
8
4-ht evolved
8
evolved inteins
8
signaling pathway
8
dependent 4-ht
8
cells
6
evolved
5

Similar Publications

Background: Colorectal cancer (CRC) is a major public health concern. Animal models play a crucial role in understanding the disease pathology and development of effective treatment strategies. Chemically induced CRC represents a cornerstone in animal model development; however, due to the presence of different animal species with different genetic backgrounds, it becomes mandatory to study the susceptibility of different mice species to CRC induction by different chemical entities such as 1,2-dimethylhydrazine (DMH).

View Article and Find Full Text PDF

Background: Extracellular matrix (ECM) proteins play a crucial role in regulating the biological properties of adherent cells. For cryopreserved fibroblasts, a favourable ECM environment can help restore their natural morphology and function more rapidly, minimizing post-thaw stress responses.

Methods And Results: This study explored the functional responses of cryopreserved enriched caprine adult dermal fibroblast (cadFibroblast) cells to structural [collagen-IV and rat tail collagen (RTC)] and adhesion ECM proteins (laminin, fibronectin, and vitronectin) under in vitro culture conditions.

View Article and Find Full Text PDF

In-stent restenosis (ISR) following interventional therapy is a fatal clinical complication. Current evidence indicates that neointimal hyperplasia driven by uncontrolled proliferation of vascular smooth muscle cells (VSMC) is a major cause of restenosis. This implies that inhibiting VSMC proliferation may be an attractive approach for preventing in-stent restenosis.

View Article and Find Full Text PDF

Sebaceous free fatty acids are metabolized by multiple skin microbes into bioactive lipid mediators termed oxylipins. This study investigated correlations between skin oxylipins and microbes on the superficial skin of pre-pubescent children (N = 36) and adults (N = 100), including pre- (N = 25) and post-menopausal females (N = 25). Lipidomics and metagenomics revealed that Malassezia restricta positively correlated with the oxylipin 9,10-DiHOME on adult skin and negatively correlated with its precursor, 9,10-EpOME, on pre-pubescent skin.

View Article and Find Full Text PDF

Pulmonary Delivery of Nonviral Nucleic Acid-Based Vaccines With Spotlight on Gold Nanoparticles.

Wiley Interdiscip Rev Nanomed Nanobiotechnol

January 2025

School of Pharmacy and Waterloo Institute of Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada.

Nucleic acid-based vaccines are leading-edge tools in developing next-generation preventative care. Much research has been done to convert vaccine gene therapy from an invasive to a noninvasive administration approach. The lung's large surface area and permeability make the pulmonary route a promising noninvasive delivery option for vaccines, with systemic and local applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!